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Abstract—Ensuring the safety of cyclists and pedestrians has
become imperative in our ever expanding urban centers. Despite
advancements in vehicle safety technology, traditional cameras
often fail in adverse weather and low-light conditions. This paper
investigates the efficiency of integrating thermal cameras with
dash cameras to enhance detection accuracy of vulnerable road
users. We first collected and annotated datasets, comprising ther-
mal and dash camera footage under various weather conditions.
We then developed a deep learning object detection model using
YOLOv8 and Roboflow. Separate models were trained for each
camera, then fused to compensate for their individual limitations.
It was observed that dash camera is prone to occlusions and
varied lighting, whereas the thermal camera excels in low-light
settings. The performance metrics for the thermal camera showed
a total mAP50 of 0.92 and mAP50-95 of 0.52 for detecting both
cyclists and pedestrians, reflecting a highly effective system with
significant potential to improve road safety.

Index Terms—Object detection, thermal camera, dash camera,
YOLOv8, deep neural network

I. INTRODUCTION

As congestion increases in urban areas, the safety of cyclists
and pedestrians has become a critical concern. Despite major
advancements in vehicle safety technology, the use of tradi-
tional cameras still leaves vulnerable road users susceptible
to poor road conditions, adverse weather, and bad visibility
[1]. Various studies have investigated the limitations of tradi-
tional vehicle safety technologies and proposed enhancements
through sensor fusion techniques [1], [2]. Traditional cameras,
despite their widespread use in vehicle safety systems, often
struggle with detection accuracy under adverse weather and
low-light conditions [3]. In [4], it was highlighted that con-
ventional visible spectrum cameras frequently fail to detect
pedestrians and cyclists at night or in foggy conditions, leading
to a higher risk of accidents. This study underscores the neces-
sity for complementary technologies that can overcome these
limitations. Thermal cameras, which detect infrared radiation,
provide significant advantages in low-visibility scenarios. In
[5], it was demonstrated that thermal imaging effectively
identifies heat signatures of pedestrians and cyclists regard-
less of lighting conditions. Their research showed a marked
improvement in detection rates when thermal cameras were
employed alongside traditional cameras.

This work was supported by Natural Sciences and Engineering Research Council (NSERC) of Canada.

In this paper, we aim to investigate the effectiveness of
compensating for the downsides of typical cameras with the
use of a thermal camera. The integration of a thermal camera
alongside a dash camera allows for increased accuracy of
detection for cyclists and pedestrians in low-light and adverse
weather conditions. The incorporation of both a thermal and
dash camera presents several challenges such as equipment set-
up, calibration, and data fusion. Data was collected, annotated,
and split for training models and testing them. To realize a
accurate object detection and data fusion methods, we develop
deep learning-based object detection models trained to detect
pedestrians and cyclists from a moving vehicle using both ther-
mal and dash cameras. The separately-trained models are fused
utilizing distinct optical information weighted to balance an
efficient model. The performance metrics are then calculated.
To reinforce thermal camera reliability verification, several
unique weather conditions are considered for data collection,
namely, Overcast, Sunny, Night time and Sleet/Snow.

II. DATA COLLECTION AND METHODOLOGY

A. Data collection equipment setup
The thermal camera was attached to the front roof of

the vehicle, while the dash camera was mounted to the top
of the inside of the windshield. Fig. 1 shows the set-up
for thermal and dash cameras. These two different locations
created accuracy and consistency errors when formatting the
data.

Figure 1: Thermal and dash camera set-up on the vehicle.

To account for this, the dash camera images were cropped
and resized to appropriately match the size of the thermal
camera images, which had very different resolutions as shown
in Table I.
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Table I: Camera Specifications

Camera type Camera name FOV (deg.) Resolution
Thermal FLIR ADK 75 640x512
Dash camera RedTiger F7NP DashCam 170 3840x2160

B. Data pre-processing

Preparing the dataset involved collecting data, annotating
the data and splitting it into training, validation and testing. In
addition, due to the small size of the dataset and to overcome
the challenges related to over-fitting and better generalizability
of the models, we apply data augmentations.

More specifically, data was collected by extracting frames
from video capture recordings, in thermal and visual bands.
Data labeling was completed using Roboflow [6], with a
manual labeling user interface. This means drawing bounding
boxes around perimeter of identified subject with appropriate
class. Dataset was split using a 65/21/14 ratio, corresponding
to Training, validation and testing, respectively. To this end,
shearing and flipping augmentations were selected due to
strong vertical dependency for feature extraction. Note that
a cyclist or pedestrian would never be upside down. The
following data augmention is considered for both thermal
and cash camera including, shearing (Vertical: 10/10 degrees,
Horizontal: 10/10 degrees), and horizontal flip.

In Fig. 2, a sample of thermal camera data which is
augmented using Sheering is shown.

Figure 2: Thermal cam shear-augmented sample

C. Training separate models

Models were trained using YOLOv8 [7] using the standard
COCO dataset released from Microsoft for general object
detection [8]. However, only cyclist and pedestrian classes
were included. Fusion was completed using Roboflow to
merge the datasets. The fused model was trained once more.

III. DATASET PERFORMANCE AND ACCURACY

The final model performed moderately, and managed to cor-
rectly identify most pedestrians, and some cyclists. The model
was weighted 50/50 due to the small size of the individual
datasets. Included in this section are the dataset sizes, the
performance of each separate model and the performance of
the fused model.

A. Dataset Details

Augmentations were performed - as described in section
II-B, to increase dataset size and ultimately enhance model
performance. The datasets had identical splits as described
in section II-B, which was a calibration procedure to ensure
performance of each dataset were separately comparable.

Each batch of data can be defined as a group of images
collected from data of unique weather conditions. Each batch
was roughly 70 - 200 images in size. For an object detection
model, this is a relatively small dataset. The base complete
datasets sizes are listed in Tables II and III. At highest achieved
performance, the thermal and dash camera datasets collectively
had 528 and 506 files, respectively, and with augmentation this
increased to 1268 and 1297, respectively.

Table II: Thermal dataset proportions

Training Sunny Overcast Night Sleet Total
Pedestrian 83 19 74 52 228
Cyclist 1 6 37 - 44
Both 10 6 2 1 19
Total 10 6 2 1 19
Validation Sunny Overcast Night Sleet Total
Pedestrian 26 8 23 15 72
Cyclist 1 6 37 - 44
Both 0 1 10 0 11
Total 2 4 1 0 7
Testing Sunny Overcast Night Sleet Total
Pedestrian 15 0 12 8 35
Cyclist 0 0 10 0 10
Both 0 0 2 0 2
Total 15 0 24 8 47

Table III: Dash camera dataset proportions

Training Sunny Overcast Night Sleet Total
Pedestrian 116 16 67 46 245
Cyclist 5 5 36 0 46
Both 13 10 3 0 23
Total 134 31 106 46 314
Validation Sunny Overcast Night Sleet Total
Pedestrian 31 10 23 18 82
Cyclist 3 0 12 0 15
Both 10 1 0 0 11
Total 44 11 35 18 108
Testing Sunny Overcast Night Sleet Total
Pedestrian 31 3 14 11 59
Cyclist 4 0 12 0 16
Both 6 1 2 0 9
Total 41 4 28 11 84

B. Performance Metrics

Mean average precision (mAP) was used to assess the
accuracy of our models. mAP is calculated using the different
sub metrics like confusion matrix, intersection over union
(IoU), recall, and precision [9], [10], [11]. Intersection of
Union (IoU): measures the degree of overlap between the
predicted bounding box coordinates and the ground truth box
coordinates. A higher IoU value indicates that the predicted
bounding box closely matches the ground truth box. Recall:
measures how often true positives occur out of all the predic-
tions
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Table IV: Performance metrics for the two cameras and
different weather condition

Thermal Camera Dash Camera
mAP50 mAP50-95 mAP50 mAP50-95

Sunny
Cyclist - - - -
Pedestrian 0.854 0.532 0.763 0.404
Average 0.854 0.532 0.763 0.404
Overcast
Cyclist 0.786 0.432 0.626 0.399
Pedestrian 0.839 0.407 0.487 0.186
Average 0.813 0.42 0.556 0.293
Night
Cyclist 0.995 0.693 0.709 0.315
Pedestrian 0.798 0.466 0.51 0.2
Average 0.897 0.58 0.609 0.258
Sleet
Cyclist - - - -
Pedestrian - - - -
Average 0.382 0.133 0.382 0.118
Total
Cyclist 0.962 0.585 0.871 0.554
Pedestrian 0.879 0.464 0.711 0.322
Average 0.921 0.525 0.791 0.438

• Precision: Indicates the probability of identifying the
accurate value within all the detected targets.

Precision =
TP

TP + FP
(1)

• Recall: Indicates the probability of correct identification
in all positive samples.

Recall =
TP

TP + FN
(2)

• AP: Summarizes the precision-recall curve as a single
value by computing the average precision value for recall
values over the interval [0, 1].

AP =

∫ 1

0

P (r) dr (3)

• mAP indicates the average evaluation of AP across
different categories.

C. Experimental results and Discussion

Table IV gives the performance of each dataset and their
individual classes to the small size, some data could not be
accurately and reliably tested. This is due to the weather not
cooperating and providing a reliable time to collect data. Note
that our dataset is publicly available [12]. The most efficient
batch is clearly the thermal camera at night time, and the least
efficient were both dash and thermal camera datasets during
sleet. These results indicate how the thermal camera is more
effective in low lighting environments.Figure 3 and 4 show
the comparison of pedestrian and cyclist detection in sunny
weather and night, respectively.

The overall mAP-50 of the thermal dataset: 0.89 was
promising, however could be improved given a larger dataset.
The dash cam mAP-50: 0.788 was moderately accurate and
there are several reasons for these differences. The dash cam-
era had much more variety and challenges for classification,

including color, occlusion like snowflakes, rain, glare etc,
which made it effectively weaker because there were more
possible instances of false positives.

It should be pointed out that the thermal dataset was trained
on more precise data, meaning labeled images were much
more consistent and strengthened the model faster. For each
dataset, and each camera used, there were unique challenges
that created interference and occlusion that complicated the
datasets. On sunny days, glare refracted from the windshield,
interfering with dash cam, and heat would be generated from
absorption, interfering with thermal results. During night time,
the thermal camera would far outperform the dash camera,
since it senses NIR (Near-Infrared) and not visible light. Dur-
ing sleet conditions, the thermal camera also outperformed the
dash camera since the colder and snow occluded environment
was favorable for thermal vision. The overcast environment
was generally consistent in performance for both datasets
since occlusion and lighting were minimized and maximized
respectively.

The most significant observation related to weather occlu-
sion was the environment definition for the thermal camera.
Theoretically, thermal cameras which interpret heat signatures
could visualize both pedestrians and cyclists better than dash
cameras due to a variety of training data. Dash camera data
includes 3 color channels, making image processing more
tedious and complex. A cyclist could be wearing a backpack,
have a helmet, a raincoat or a brightly coloured bicycle which
could fool the model easily. The thermal camera with one
channel, easily defined objects in an image and classified them,
when heat signatures stood out from their environment. This
means a pedestrian would need to be relatively hot and the
environment relatively cool. This meant the thermal dataset
excelled in all environments but sunny. The thermal camera
could also be fooled if someone wore heavy clothing that
protected their heat signature or if they were walking into the
wind for a long period of time. We observed through experi-
ment that a 3-channel thermal images were more effective for
object detection and classification. It is to be noted that the
thermal dataset had a particular tendency to classify car tires
as cyclists, due to their proximity when viewed from behind
without the proper context of the vehicle.

IV. CONCLUSION

This paper has demonstrated the integration and effec-
tiveness of advanced detection systems using dash cameras
and thermal cameras powered by YOLOv8 and Roboflow,
for the identification of pedestrians and cyclists in vari-
ous environmental conditions. We focused on evaluating the
system’s performance in terms of mean Average Precision
(mAP) at Intersection Over Union (IOU) of 50% (mAP50)
and the more stringent 50%-95%(mAP50-95), across sunny,
overcast/cloudy, night, and sleet conditions. The overall perfor-
mance metrics, with a total mAP50 of 0.92 and mAP50-95 of
0.52 for detecting both cyclists and pedestrians (thermal cam-
era), reflect a highly effective system with significant potential
to improve road safety. However, the reduced effectiveness in

1342

Authorized licensed use limited to: Carleton University. Downloaded on September 20,2024 at 01:39:35 UTC from IEEE Xplore.  Restrictions apply. 



(a)

(b)

Figure 3: (a)-(b) Comparison of data in sunny conditions for
thermal and dash camera, respectively

sleet conditions and the low accuracy in detecting pedestrians
in some scenarios indicate specific avenues for future improve-
ment. In addition, the overall performance metrics, with a total
mAP50 of 0.788 and mAP50-95 of 0.414 for detecting both
cyclists and pedestrians (dash camera), paled in comparison in
terms of performance of the thermal camera, even in favorable
conditions such as sunny conditions. Future research should
aim to refine detection algorithms for adverse weather condi-
tions and develop adaptive models that can dynamically adjust
to varying environmental conditions. Furthermore, expanding
the dataset to include a broader range of weather conditions,
pedestrian and cyclist clothing variations, movement patterns
and overall more cyclist data will be crucial for improving the
robustness and accuracy of detection systems.
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