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Abstract—Automatic fall detection using radar technology
significantly advances assisted living and smarter healthcare
solutions. In this paper, a novel unsupervised method for de-
tecting fall incidents in human daily activities is proposed. By
analyzing ultra-wideband radar returns, a radar time series
is obtained and used to find the time-frequency signatures of
different activities. These signatures are subsequently binarized
and used as input to a deep stacked auto-encoder network for
latent feature extraction. The latent features are then clustered
through a clustering layer that leverages an auxiliary distribution
function to fine-tune the samples clustered into fall and non-
fall groups. The proposed fall clustering method is compared
against several clustering approaches in terms of accuracy of
clustered samples, normalized mutual information and adjusted
rand index metrics. It is shown that the proposed method realizes
automatic latent feature learning from the radar data and can
distinguish fall from non-fall classes by uncovering patterns in
a data set with no pre-existing labels. The results show that the
proposed unsupervised fall detection method outperforms the
other approaches in terms of providing higher accuracy of the
clustered data samples. The advantage of the proposed method
is that it does not need a large dataset to achieve distinctiveness
between clusters.

Index Terms—Smart homes, fall detection, deep learning,
clustering, ultra-wideband radar.

I. INTRODUCTION

Falling down is regarded as the second cause of acci-
dental death among seniors after road traffic accidents [1].
In addition, in the case of non-fatal fall injuries, the cost
of medical expenses is substantial: from millions of dollars
economic costs on individuals and care system to ever-
lasting life implications such as decreased functioning and
loss of independence [2]. This has necessitated an automatic
and reliable fall detection system. The current fall detection
methods are mostly based on wearable devices, video cameras
and smart-phone sensors [3]. Remote indoor monitoring using
radar is an alternative to the current approaches [4]-[9], since
it avoids privacy issue of the video-based techniques and does
not require people to wear a tag [10]. For instance, in [7], a
radar-based time series signals classification approach using
convolutional and recurrent neural networks was devised to
distinguish falls from non-fall activities. In [8], a supervised
learning approach was proposed for fall detection using a
residual network to automate feature learning. A supervised
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wavelet-based approach was proposed in [11] to detect fall
incidents using Doppler radar. In [12], micro-Doppler signa-
tures of different simulated activities were classified using the
convolutional neural network.

Most of the existing works rely on manual labeling of a
set of data samples and develop a supervised approach to
classify different features extracted from the radar returns
either in time or frequency domain. In addition, the lack
of enough fall data samples in real life scenarios has made
the training process very difficult. Unsupervised approaches
aim to overcome the lack of fall data samples. Only few
attempts have so far been made to develop an unsupervised
approach for activity recognition from radar data. In [13], a
feature extractor was built using 3-D convolutions to construct
the range-velocity-time features of radar signals along with
a predictor to learn the pattern of non-fall actions. In [14],
a radar signal recognition was proposed using a restricted
Boltzmann machine to extract the feature parameters. In [15],
radar-based fall data samples were detected in an unsupervised
manner, as anomalous events. However, none of these works
have addressed the radar-based fall detection problem using an
unsupervised approach, where the feature learning and cluster
identification are accomplished.

In this paper, a new unsupervised approach for fall detection
is proposed which is based on time-frequency signatures of
the ultra-wideband radar returns and deep neural networks for
latent feature extraction and clustering. More specifically, the
proposed fall detection method is realized by projecting the
energy content of the fall and non-fall activities, contained in
their corresponding spectrograms, into binary image represen-
tation followed by an automatic latent feature extraction using
deep auto-encoder network. The latent features are fed into a
clustering layer to assign data samples into different groups. To
fine-tune the samples clustered into fall and non-fall groups,
a centroid-based auxiliary distribution function is defined and
used to train the clustering layer.

II. EXPERIMENTAL SETUP AND MEASUREMENT

A low-power ultra-wideband (UWB) radar system, the
Xethru X4MO03, was used to collect data from 10 subjects
engaged in various activities, including: walking towards the
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Fig. 1. Radar signal associated with fall after walking toward radar, (a) time
series (b) time-frequency representation, (c) binary image.

radar and falling, standing in front of the radar and falling,
standing and falling perpendicular to the radar’s line of sight,
lying down and standing up in front of the radar, and lying
down and standing up perpendicular to the radar’s line of sight.
UWRB radar offers high spatial resolution and safe monitoring
through short, high-frequency pulses. The radar was positioned
1.5 meters above the ground. Each scan was conducted over 15
seconds and sampled at a rate of 200 samples per second. The
radar range was set to 10 meters, providing a range resolution
of 5.35 cm, with each scan divided into 189 bins.

III. RADAR IMAGE GENERATION

In the experiments, the radar scattering matrix X = [z; ;] €
R%1*t2_je., the received radar signal, is recorded, where t;
columns represent the spatial samples from different ranges
(fast-time) and t; rows correspond to observations recorded
at different time intervals (slow-time). From the scattering
matrix, columns are summed up resulting in a radar time
series. To analyze the radar time series signals, a joint time-
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frequency representation is obtained by applying the short-
time Fourier transform (STFT). The squared magnitude of the
Short-Time Fourier Transform (STFT) produces the spectro-
gram, representing the energy associated with micro-motion
signatures over time [16], [17]. Following the approach in [9],
the radar spectrograms of fall and non-fall activities are
projected into binary image representation. Fig. 1 illustrates
an example of radar time series along with its corresponding
spectrogram and binary image for a fall activity.

IV. PROPOSED FALL DETECTION METHOD

In this section, we describe the proposed fall detection
method, which leverages a stacked auto-encoder to map input
images to latent features. The stacked auto-encoder consists of
multiple hidden layers, where adding layers allows the model
to capture more complex features. However, excessive layers
may lead to overfitting, reducing the model’s generalizability.
The structure of the stacked auto-encoder used in this approach
is illustrated in Fig. 2. To determine the optimal number and
size of hidden layers, we applied random search optimization,
resulting in a model with four hidden layers containing 750,
350, 350, and 250 neurons in the encoder block. Binary images
from Section III serve as input for the stacked auto-encoder,
which is trained using a reconstruction loss L, given by [18]
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where x is the input binary image, Z is the stacked auto-
encoder reconstructed image and n is the number of data
samples. The mean squared error loss function realizes the
preservation of significant features in the reconstructed image.
The common approach for latent feature learning is to only use
the pre-trained encoder to map the radar binary image data into
latent features, i.e., once the training is finished, the decoding
block will not be used in clustering. In the proposed clustering
model, a clustering layer is stacked to the trained encoder
and is further trained. Inspired by the t-distributed stochastic
neighbor embedding (t-SNE) algorithm [19], to convert the
latent features onto cluster label probability, the clustering
layer is built by using the student’s t-distribution as given
by [19]
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where {h;};_, is the encoded input in the latent space,
{cj};nzl is the cluster centroid for cluster j and m is the
number of clusters. It is noted that (3) measures the similarity
between the encoded data sample and a centroid. The weights
in the clustering layer are specified by the cluster centroids
and are initialized by performing a K-means clustering on
the latent features. Since the false positives should strongly
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Fig. 2. Block diagram of the proposed unsupervised radar-based fall detection method.

be avoided in a fall detection system, i.e., assigning a low
confident non-fall data sample to a fall cluster is not desired,
the clustering assignment should be tuned. To this end, an
auxiliary probability distribution is defined as in [20]

E]/Zz fij
> (12750 85)

Dij = (3)

which highlights the data samples having high likelihood of
assignment by squaring the original distribution and iteratively
updating the cluster assignments. Tuning is realized by mini-
mizing the Kullback-Leibler divergence (KLD) [21], given by

Lclustering = KLD = Z Zpijlogzﬁv “4)
. . 1]

3 J f
which is calculated between the clustering model output
and auxiliary probability distribution. The tuning results in
iteratively improving the clustering assignment of the latent
feature representation.

It is noted that for comparison purpose the latent features
obtained by training the stacked auto-encoder are used as
input to the other clustering methods such as K-means [22],
agglomerative or density-based approaches [22]. K-means
creates cluster centers and employs metric relations to as-
sign each data sample into a cluster with the closest center.
Agglomerative-based method builds hierarchy of clusters and
data samples. Density-based clustering identifies dense clusters
of data samples.

Fig. 2 presents a block diagram of the proposed fall detec-
tion method, which consists of three main stages:

« An abstracted and non-linear data representation for the
unlabeled dataset is learned by a stacked auto-encoder
neural network.

« The encoder output is stacked to a clustering layer, where
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clustering layer weights are initialized with K-Means
cluster centers.

e The clustering model is trained to refine the clustering
layer by minimizing Lejustering-

V. EXPERIMENTAL RESULTS

Experiments were made as realistic as possible with subjects
performing fall and non-fall activities to evaluate the perfor-
mance of the proposed unsupervised fall detection method.
The number of different fall and non-fall experiments per-
formed are 187 and 149, respectively. All deep learning
tasks were implemented using Keras that is back-ended by
TensorFlow package.! In order to evaluate the performance of
the proposed method, clustering accuracy (CA) is obtained,
which is defined as

}, (%)

where [; is ground truth assignments and 7" is the best mapping
that matches the cluster indexes and ground truth assignments.
This mapping is computed using the Hungarian algorithm [23].
The normalized mutual information (NMI) metric is also
obtained, defined as

i i =T (ci)}

n
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where I (I;,¢;) = H(l;) — H(l;|c;) denotes the mutual infor-
mation of /; and ¢;, H(l;) is the entropy of the ground truth
assignments, H (c¢;) is the entropy of the cluster assignments
and H(l;|c;) is the entropy of the ground truth assignments
within each cluster. NMI measures the amount of information

IThe dataset and code used in this research work will be made publicly
available.
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Fig. 3. Cluster assignment of fall and non-fall activities using (a) K-means and (b) the proposed clustering approaches.

shared by the random variables representing the predicted clus-
ter distribution and the ground truth assignment distribution
of the data samples [24]. The NMI value close to 1 indicates
a perfect assignment, while random prediction results in an
NMI close to 0. In addition, adjusted rand index (ARI) is
computed to see how similar the clusters are to the benchmark
classifications [25], which is defined as

RI — E{RI}
ARI = 7
R max (RI) — E{RI}’ ™
where RI = %, E {.} denotes expected value,

TP denotes a true positive decision which assigns two similar
data samples to the same cluster, TN denotes a true negative
decision which assigns two dissimilar data samples to different
clusters, and FP (false positive) and FN (false negative) are the
two types of errors. More specifically, a FP decision assigns
two dissimilar samples to the same cluster and a FN decision
assigns two similar samples to different clusters. It is noted
that ARI ranges from —1 to 1, where negative and zero
values indicate chance-level assignments and positive values
indicate similar assignments. For comparison purposes, several
approaches are considered, namely, K-means clustering, spec-
tral clustering, agglomerative clustering, density-based spatial
clustering and its variant which is ordering points to identify
the clustering structure (OPTICS) [26], and Gaussian mixture
models (GMM) [26]. Table I gives clustering accuracy, nor-
malized mutual information and adjusted rand index obtained
using the proposed method and those of the other methods. It
is seen from this table that the proposed method outperforms
the other methods by providing AC, NMI and ARI higher than
those yielded by the other clustering methods. In particular,
the proposed method achieves 78.27% accuracy, 24.56% NMI
and 31.72% ARI, which are higher than those of the other
methods. Remarkably, the proposed method performs better
than the baseline K-means clustering about 13% in terms of
clustering accuracy. The superior performance of the proposed
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TABLE 1
CLUSTERING ACCURACY, NORMALIZED MUTUAL INFORMATION AND
ADJUSTED RAND INDEX (ALL IN %) OF THE PROPOSED FALL DETECTION
METHOD AS WELL AS THOSE OBTAINED USING THE OTHER METHODS.

Method CA NMI ARI
K-means 68.75 | 10.59 | 13.80
Spectral Clustering | 69.34 | 11.21 | 10.97
Agglomerative 58.63 5.26 4.65
OPTICS 56.84 | 11.26 | 7.81
GMM 68.45 | 10.30 | 13.36
Proposed 78.27 | 24.56 | 31.72

method based on deep clustering network is due to the fact
that the proposed method fine-tunes the latent features by the
clustering layer to refine the allocated data samples.

Fig. 3 shows the cluster assignment of fall and non-fall
data samples obtained using the baseline K-means cluster-
ing method and the proposed clustering approach with deep
clustering layer. It is seen from this figure that the proposed
approach can assign data samples to clusters more accurately
than K-means clustering method.

VI. CONCLUSION

A novel fall detection method using ultra-wideband radar
and an unsupervised deep clustering network was proposed.
Radar data was collected in a room environment by con-
sidering the home healthcare setting. The proposed method
converted time-frequency radar signatures into binary images,
which were then processed by a deep clustering model to au-
tomatically learn and categorize latent features. Experimental
results demonstrated that the proposed fall detection method
outperforms several state-of-the-art unsupervised methods, in-
cluding K-means, spectral clustering, and GMM, in clustering
accuracy and normalized mutual information. The significant
advantage of the proposed method is its ability to distinguish
fall from non-fall events without requiring a large dataset or
human supervision.
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