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Abstract-Feature extraction is an indispensable step in clas­
sification of electroencephalography (EEG) signals for motor 
task recognition. This paper proposes a novel method for motor 
imagery brain-computer interface (BCI) EEG signals classi­
fication based on spectral-temporal common spatial patterns 
feature extraction and deep convolutional neural network. Unlike 
other existing methods, the proposed method is built upon both 
frequency and time domain features of the EEG signals. These 
features are used as input to the proposed convolutional neural 
network for a higher level feature extraction and classification. 
The proposed network is comprised of convolutional and fully­
connected layers to hierarchically learn the saliency in the 
signal. Several experiments are conducted on standard datasets 
taken from BCI competitions to assess the performance of the 
proposed method and to compare it with those of the other 
existing methods. The results exhibit a significant improvement 
in classification accuracy for a number of subjects when using 
the proposed method. 

Index Terms-Feature learning, convolutional neural network, 
task recognition, MI-BCI, EEG signal. 

I. INTRODUCTION

A motor imagery brain computer interface (MI-BCI) system 

points to the task of discriminating the motor imagery of 

different movements [1] such as moving a mouse cursor on 

a monitor to different directions, only by imagining hand 

movements. The goal of such system is to realize a patient­

friendly neuro-rehabilitation [2] by establishing efficient and 

accurate algorithms to translate brain activities. The elec­

troencephalogram (EEG) signals have commonly been used 

to analyze the brain activities in MI-BCI systems as these 

signals are able to detect changes in brain's electrical activities. 

To handle the poor spatial resolution of the EEG signals [3], 

many studies have investigated feature extraction techniques 

based on the common spatial patterns (CSP) [4], where the 

spectral characteristics of the EEG signals have been consid­

ered for class prediction. However, EEG signals are known to 

have complex patterns with high variability. Thus, manually 

extracting a limited number of features from EEG signals is 

not an optimal solution for detecting their salient patterns. In

order to develop automated approaches and realize optimal 

feature extraction, deep learning based methods have widely 

been introduced [5], [6], to investigate if higher-level features 

from MI-BCI EEG signals can be learned via hierarchical 

nonlinear mappings. In [5]-[7], time or frequency domain 

features of the EEG signals were used as input to convolutional 

neural networks. In [8] and [9], the EEG signals in the time 

domain were analyzed using deep belief networks. In [10], 

a restricted Boltzmann machine was studied as an alternative 

to supervised approaches to cluster the EEG signals. In [11], 

an approach for EEG signal classification was proposed in the 

time domain using a long short-term memory network. In [12], 

a semi-supervised deep stacking network was proposed for 

EEG classification by incorporating the contrastive divergence 

algorithm with an adaptive learning rate. In [13], a residual 

network was proposed to classify EEG signals in the time­

frequency domain. In [14], a capsule network was proposed 

to process EEG signals and distinguish different motor tasks. 

However, none of the above works have addressed the binary 

EEG classification problem through mapping the specially­

filtered EEG signals into image representation and a convo­

lutional neural network for hierarchical feature learning. 

In view of this and to improve the recognition accuracy of 

the EEG signals in MI-BCI systems, a new method based on 

spectral-temporal common spatial patterns and convolutional 

neural network is proposed in this work. What differentiates 

the proposed method from the existing works is a joint fea­

ture extraction strategy. First, the proposed spectral-temporal 

common spatial patterns (STCSP) feature extraction captures 

the time-frequency information from EEG signals. In other 

words, unlike the existing CSP-based works where the log­

variances of the filtered signals were used as input features to 

a classifier, the STCSP features are extracted from the EEG 

signals and converted into image representation by keeping 

their temporal resolution unchanged. Then, a customized con­

volutional neural network captures high-level features from the 

STCSP image representations. The proposed network leverages 

the convolutional neural network, which has demonstrated its 

advantages to capture complex mappings learned from labeled 

data, and fully-connected layers, which has smoothly conveyed 

the discriminative features to the output layer and captured the 

saliency in the EEG signals. Several experiments are conducted 

using the standard data sets taken from BCI competitions III 

and IV to validate the proposed method. 

II. PROPOSED METHOD

In this work, motor task recognition from the EEG signals 

is studied. The EEG experiments set is denoted as Xi E 
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Fig. 1. (a)-(b) Two class samples of STCSP features obtained from AW subject 
m dataset 1 and (c)-(d) their corresponding image representations. 

�Nch x N,, for (1 :S i :S Ntr ), where Ntr denotes the number of
experiments; � represents the real domain, Nch is the number
of sensors, and Nt is the number of time samples collected
from each sensor in an experiment. The training dataset is
denoted by {(Xi , li)}, for (1 :S i :S Ntr), where li represents 
the label corresponding to the ith trial. 

Common spatial pattern identifies a linear subspace to 
maximize the variance of one class and minimize the variance 
of the other class [4], e.g., in the case of hand or foot 
movement recognition. In order to extract the STCSP features 
from the EEG signals, optimal spatial filters are first obtained 
through joint diagonalization of the two covariance matrices 
correspond to the two classes. The normalized covariance 
matrix R for e;ich trial of the EEG signal Xi , is determined
as R = t X;� xT , where trace of a matrix gives the sum of 

race i i the elements on e main diagonal. The covariance matrices 
Ra and Rb of the two classes a and b are summed up to a new 
covariance matrix Re. This matrix is then decomposed into a 
set of eigenvectors Be and eigenvalues Ac, i.e., Re

= Bc-XcBT. 
This decomposition yields a whitening transform given by
W ,-1/2 T 

= "c Be , and used to transform Ra and Rb into a set of
eigenvectors U and their corresponding diagonal matrices of 
eigenvalues '1/Ja and '1/Jb- The eigenvectors U = (U1, ... , UNch

) 
are sorted in a descending order with respect to the eigenvalues 
in '1/Ja = ( 7Pa,l, 7Pa,2, ... , 7Pa,Nch 

), 7Pa,l � ... � 7Pa,Nch 
and in a 

ascending order with respect to '1/Jb = ( 7Pb,I, 7Pb,2, ... , 7Pb,Nch 
), 

7Pb,I :S • • • :S 7Pb,Nch
. It is noted that only m = 3 

eigenvectors are selected to build the projection matrix, i.e., 
U* = (U1, ... , Um; UNch-m+I, ... , UNch

), as suggested in [15]. 
The corresponding projection matrix is given by 

P= U*W, (1) 

which is used to map each EEG trial Xi as Zi = PXi. Unlike 
the commonly-used CSP techniques where the features are 
obtained by taking the logarithm of the variance of Zi , the pro­
posed method is based on spectral and temporal CSP features 
of the EEG signals. In other words, the filtered EEG signals 
are projected onto image representation and the temporal 
resolution of Zi are kept unchanged, shown in Fig. 1, resulting 
in STCSP features having both the frequency and time resolu-

 

TABLE I 
CONFIGURATION OF THE PROPOSED DEEP NEURAL NETWORK. 

Layer Layer type Filter shape Output shape 

0 Input - [Ntr, 6, 350, I]

1 Convolutional 32x[2, 2] [Ntr, 6, 350, 32] 

2 Pooling [2, 2] [Ntr, 3, 175, 32] 

3 Convolutional 64x[2, 2] [Ntr, 3, 175, 64] 

4 Pooling [2, 2] [Ntr, 2, 88, 64] 

5 Deep-PC - [10]

6 Softmax - [2]

tions, i.e., the dimension of Zi is 2m x Nt. Fig. 1 shows two 
examples of STCSP features and their corresponding images 
for right hand/right foot classes from AW subject in dataset 
1, discussed in Section III. In the proposed MI-BCI EEG 
signal classification method, the convolutional neural network 
is applied to STCSP image representations to extract features 
from the filtered signals. Table I gives the configuration of the 
proposed network. The STCSP image representations Z are 
used as input to the proposed network. The feature map zci 

of each convolutional layer Ci is obtained as 

(2) 

where * is the convolutional operator, c denotes the layer 
index, K and b denote filters and biases, respectively, and 
rectified linear unit activation function (ReLU) is defined as 
J(x) = max(0,x). First, in convolutional layer c1, 32 filters 
{kc1 }32 f . j ·=i o size 2 x 2, are convolved with the input images 
with siride 1. After applying an activation function, the feature 
map is z

c

i having a depth of 32. To lower the dimensionality 
of the convolved extracted features, a non-overlapping 2 x 2 
max-pooling layer P1 is employed after each convolution layer. 
The max-pooling operation is performed by obtaining the 
maximum value of features within a specified mask in the 
preceding layer. Next, in convolution layer c2, the feature map 
of the �rnvious pooling layer z

c

i, is convolved with 64 filters 
{ k'j2} J=l of size 2 x 2 with stride 1. Applying ReLU and
max-pooling will result in z

c2 feature map having a depth of 
64. This feature map is flattened into a 1D vector and used as
an input to the fully-connected layers having 1000, 300, 200,
50, 10 neurons to smoothly decrease the dimensionality of the
feature maps, and one output layer for class prediction. The
softmax function is used for classification of the bottleneck
features. Having the true labels of the EEG signals li and
probabilistic outcomes h'f, softmax cross-entropy cost function
L is defined as [16], [17]

l N,r 1 

L = -N LLI(li = v)log(hY), (3) 
tr i=l v=O 

where I (.) is the indicator function. The optimal value for 
drop-out factor [18] was experimentally found to be p = 0.7, 
i.e., 70% of the neurons were randomly selected in each layer
during training and the rest are discarded. Also, The Adam
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Fig. 3. Activations of (a)-(b) the first and third fully-connected layers, and (d) output layer, for one sample STCSP signal from AW subject in Dataset 1. 

classification accuracy which is higher than the other methods 
on different datasets. This improved performance in motor 
task recognition is attributed to a two-stage feature extraction 
strategy, where the spectral and temporal domain features were 
first extracted and converted to an image representation, and 
then a hierarchical feature extraction was used based on the 
proposed convolutional neural network. From Table III, it is 
seen that the proposed method outperforms DTMKL [21], 
SBRCSP [22], LRCSP [23] and DA-WNN [24] on Dataset 
1 with an average motor task recognition improvement of 
7% over all the subjects. It is also seen that the proposed 
method provides classification accuracies higher than those of 
RCSP-Res [13] for AL, AW and AY subjects. In addition, on 
Dataset 2, the proposed method shows superior performance 
to other methods in most of the subjects under study. As 
compared to [25], [3], [12] and [11] with average classification 
accuracies of 79.89, 81.63, 83.54 and 76.49, respectively, the 
proposed MI-BCI EEG signal classification method provides 
an average classification accuracy of 84.55. It is noticeable that 
the SADSN [12] and AX-LSTM [11] perform considerably 
well on subjects C4-C6, while the proposed method provides 
a higher accuracy on the other subjects. 

It is to be noted that more advanced CSP-based methods 
could be used in the first stage for extracting features. However, 
the work aimed to show that (1) how preserving time and 
frequency resolutions in CSP method can improve the recog­
nition performance, and (2) the effectiveness of the proposed 
convolutional neural network for high-level feature extraction 
and classification. The classification accuracy may be further 
improved by careful choice of CSP-based filters for different 
time segments or frequency bands of the EEG trials. 

In the case of drop-out, it was observed that for some 
subjects like AV and AA in Dataset 1, increasing the value of 
p, may result in higher recognition accuracies. However, for 
the sake of a fair comparison, subject-specific hyper-parameter 
selection was avoided and the experiments were conducted 
with fixed values. 

TABLE IV 
CLASSIFICATION ACCURACY OBTAINED USING DIFFERENT METHODS ON 

DATASET 2. 

Cl C2 C3 C4 cs C6 C7 C8 C9 
SCSP [3] 91.66 67.36 (97.91 72.22 65.27 66.67 (84.72; 97.22 91.66 
FDBN [10] 71.08 55.56 76.87 65.62 69.08 64.98 71.68 92.37 82.38 
AX-LSTM [11] 75.12 71.38 72.24 72.91 (82.62 69.64 87.84 80.28 75.05 
SADSN [12] 77.14 68.57 72.43 97.13 86.56 88.57 78.57 (95.71 87.19 
TIS [25] (95.3) 66 98.2 66 68.9 69.8 68.9 93.4 (92.5) 
SSRCSP [26] 88.89 53.47 97.22 70.14 56.25 68.75 79.17 97.22 90.28 
HSS-ELM [30] 81.14 49.86 78.02 63.33 44.03 49.44 81.11 81.49 81.38 
FFTEM [31] 68.72 54.97 69.08 55.07 72.66 60.61 70.13 83.49 83.14 
Proposed 95.48 (69.80 98.2 (72.91 71.53 (73.95 87.84 97.22 94.01

IV. CONCLUSION

In this work, a new method for MI-BCI EEG signal clas­
sification was proposed. The proposed method was realized 
by developing two stages of feature extraction based on 
spectral-temporal common spatial patterns and convolutional 
neural network. In the first stage, discriminant spectral and 
temporal features were extracted from the EEG signals resulted 
in STCSP features. The STCSP features were obtained by 
preserving both the frequency and time domain features of 
the EEG signals and using them as input to the convolutional 
neural network for the second stage feature extraction and 
classification purposes. The proposed network was constructed 
by stacking convolutional and fully-connected layers to smooth 
the feature learning process and reduce the dimensionality 
of the feature map. It was shown that the proposed method 
provides a superior performance as compared to other exist­
ing methods in terms of recognition accuracy for a binary 
classification problem. The higher classification values of the 
proposed method can be attributed to the fact that unlike 
the other approaches, the proposed method constructs the 
STCSP features and relies on high-level feature extraction 
using convolutional neural network. 
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