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Abstract—Automatic detection of a falling person based
on noncontact sensing is a challenging problem with ap-
plications in smart homes for elderly care. In this article,
we propose a radar-based fall detection technique based
on time-frequency analysis and convolutional neural net-
works. The time-frequency analysis is performed by apply-
ing the short-time Fourier transform to each radar return
signal. The resulting spectrograms are converted into bi-
nary images, which are fed into the convolutional neural
network. The network is trained using labeled examples
of fall and nonfall activities. Our method employs high-
level feature learning, which distinguishes it from previ-
ously studied methods that use heuristic feature extraction.
The performance of the proposed method is evaluated by
conducting several experiments on a set of radar return
signals. We show that our method distinguishes falls from
nonfalls with 98.37% precision and 97.82% specificity, while
maintaining a low false-alarm rate, which is superior to
existing methods. We also show that our proposed method
is robust in that it successfully distinguishes falls from
nonfalls when trained on subjects in one room, but tested
on different subjects in a different room. In the proposed
convolutional neural network, the hierarchical features ex-
tracted from the radar return signals are the key to under-
stand the fundamental composition of human activities and
determine whether or not a fall has occurred during human
daily activities. Our method may be extended to other radar-
based applications such as apnea detection and gesture
detection.

Index Terms—Convolutional neural network, fall detec-
tion, time-frequency analysis, ultrawideband (UWB) radar.
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I. INTRODUCTION

HUMAN activity recognition has become increasingly
important in recent years as it enables automatic

assessment of subjects’ health and well-being [1]–[3]. Among
the elderly, most injury-related hospitalizations are due to
falls [4]. Therefore, accidental fall detection is an important
subset of human activity recognition [5]–[7]. If no preventive
measures are undertaken, the number of injuries due to falls
can double by 2030 due to aging population [8]. Unfortunately,
continuous 24-h human monitoring of elderly to prevent falls
is impossible, and therefore, an automated way of monitoring
them is needed in order to detect and prevent falls.

Activity-monitoring methods currently use inexpensive wear-
able sensors such as accelerometers [9]. With the emergence of
smart homes, noncontact indoor monitoring using radar-based
technology is gaining interest as radar signals can penetrate ob-
stacles such as wall to locate targets [10]. In addition, radar-based
methods do not violate the privacy of the monitored subjects [11]
and preclude the need for wearing a sensor [2]. More recently,
ultrawideband (UWB) radars have gained popularity as active
monitoring sensors. UWB radars are more suited for activity and
fall recognition because of robustness to multipath fading, higher
penetration ability, finer time resolution [12], and higher spatial
resolution when compared to continuous wave radars [13]–[17].

Radar-based monitoring methods use either a threshold [18]
or learning-based approach [19] to detect falls. Threshold-based
fall detection requires effective features or descriptors, and when
such descriptors exceed preset thresholds during a fall, an alarm
would be triggered. Learning-based approaches require models
trained using features extracted from either the time or the
frequency domain.

In [19], a human activity recognition method based on radar
micro-Doppler data was designed by extracting features from
time-velocity and cadence-velocity domains while in [20], a
similar design was used to classify people. In [21], a human gait
classification method was proposed using the motion signature
from arm and leg movements. In [22], using micro-Doppler
signature, different human activities were classified over an
extended time duration, through a wall, and at multiple angles
to the radar. A wavelet-based approach was devised in [23] for
fall detection using Doppler radars. In [24], fall detection was
achieved exploiting time-frequency characteristics of the radar
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Doppler signatures and the events were classified by a sparse
Bayesian classifier using the joint statistics of three different
features. In all these methods, feature engineering had to be
done by a human and the classification accuracy depended on
the engineered features.

Instead of using engineered features, automatic feature ex-
traction for fall detection can be achieved through deep learn-
ing methods [25]. A deep neural network approach for fall
detection was presented in [26]. Gray-scale images were ob-
tained from spectrograms, and stack auto-encoders were used
to extract the features from the gray-scale images. Softmax
regression was used to classify different kinds of activities
including falls. In [27], transfer learning was investigated for
classifying activities using data collected from wearable sen-
sors. The pretrained AlexNet was used for feature extraction
from spectrogram images followed by a linear or nonlinear
support vector machine (SVM) for classification. In [28], human
micro-Doppler signatures of different simulated activities were
classified using a convolutional (convolutional) neural network
using both color and gray-scale time-frequency representations
as input to the network. All the previous research cited above
used object-specific feature extraction. None of them addressed
radar-based fall detection using automatic features that were
based on shape of the distribution of the energy in the joint
time-frequency domain.

This article proposes a fall detection method by projecting
the energy content of the fall and nonfall activities, contained in
their corresponding spectrograms, into binary image represen-
tations. The binary image is enhanced using a morphological
operation and then is used as input into a deep convolutional
neural network that performs automatic feature extraction. The
proposed method will be compared with other machine learning
approaches such as decision trees (DTs), k-nearest neighbors
(KNN), and SVMs. These approaches are presented with the
same input that was applied to the deep convolutional network
used in the proposed approach.

The rest of this article is organized as follows. In Section II,
the UWB radar used in the data acquisition and experiment setup
in the proposed method is described. In Section III, the proposed
fall detection method comprising of target range selection, time-
frequency analysis, binary image generation, and data augmen-
tation along with automatic feature extraction are described. In
Section IV, experimental results, current challenges, and future
directions on radar-based fall detection are presented. Finally,
Section V concludes this article.

II. EXPERIMENTAL SETUP AND MEASUREMENT

The radar used in this experiment was the Xethru X4M03
development kit, manufactured by Novelda (Oslo, Norway) [29].
This radar uses a UWB transceiver operating in the range of
5.9–10.3 GHz and a patch antenna with a 65◦ aperture in both
azimuth and elevation axes. This particular radar was chosen
because of its low cost, small size, and high spatial resolu-
tion. The experiments were conducted in two realistic room
environments at the University of Ottawa. Both rooms were
cluttered and had the following dimensions: 12.6 × 4.1 and

Fig. 1. Postures in one of the room environments. (a) Before. (b) After
a fall.

5.7 × 2.2 m2. The radar was mounted 1.5 m above the floor
level. The sampling rate of the radar was 200 Hz, which is
high enough to capture high-frequency components of the radar
signal that appear during a fall (around 60 Hz). The dataset
used in our experiments included different types of fall and
nonfall activities performed by ten different healthy subjects
aging from 20–35, namely, walking toward radar and falling
down at different distances to the radar, i.e., 3 or 4 m, standing in
front of radar and falling down at different distances to the radar,
standing and falling down perpendicular to the radar line of sight,
lying down with or without side rolling or other movements, and
standing up in front of the radar, and lying down and standing up
perpendicular to the radar line of sight. Each activity lasted 15 s,
within which one of these activities occurred. The signals were
then digitized at a rate of 200 samples/s. The range of the radar
used in this study was set to 10 m. Since it has a 5.35 cm range
resolution, there are 189 range bins. The type and number of
different activities performed are given in Table I. Fig. 1 shows
the posture of one of the subjects before and after a fall incident.
The data were manually labeled as fall or nonfall. Ethics approval
for conducting the experiments was obtained from the Research
Ethics Board at the University of Ottawa.

III. PROPOSED FALL DETECTION METHOD

In this section, the proposed fall detection method based
on time-frequency representation of the radar return signals
and automatic feature extraction using a convolutional neural
network is presented. Fig. 2 shows the block diagram of the
proposed radar-based fall detection method.

A. Target Range Selection

The radar return signals were recorded into a matrix, where
each column represents the spatial samples from different ranges
(fast-time), while the data in each row corresponds to obser-
vations recorded at different time intervals (slow-time). The
first 20 range bins, corresponding to all ranges less than 1 m
from the radar, were noisy and were removed before further
processing. The observations from the range bin having the
highest variance was chosen to be the target range bin and used
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TABLE I
TYPES AND NUMBER OF ACTIVITIES PERFORMED BY TEN DIFFERENT SUBJECTS IN TWO DIFFERENT ROOMS

Fig. 2. Block diagram of the proposed radar-based fall detection
method which is built upon time-frequency analysis and convolutional
neural network.

Fig. 3. Radar return signal in the target range bin. (a) Falling down.
(b) Standing up.

for further processing. Fig. 3(a) and (b) shows the radar return
signals normalized by the maximum amplitude for the target
range bin after clutter removal, corresponding to falling down
and standing up activities, respectively. More specifically, in
Fig. 3(a), the subject is standing in front of the radar and then
falls, while in Fig. 3(b), the subject is lying down and then stands
up while facing the radar.

B. Time-Frequency Analysis

It is known that the nature of the radar return signal from
moving human subjects is nonstationary with time-varying

Fig. 4. Time-frequency signature. (a) Falling down. (b) Standing up.

frequency contents [7]. In view of this, in order to analyze the
radar return signals, a joint time-frequency representation is ob-
tained by applying the short-time Fourier transform (STFT) [30].
For a radar return signal in the target range bin x[·], STFT is
defined as follows:

X[n, k] =

∞∑

r=−∞
x[r]W [r − n] exp(−j2πrk/N) (1)

where W [·] is a finite length sliding window function (e.g., a
Hamming window), n is the time index, k = 0, 1, . . ., N − 1 is
the frequency index, and N is the number of frequency points.
The squared magnitude of STFT yields the spectrogram, i.e.,
S(n, k) = |X[n, k]|2. In this experiment, a Hamming window of
size 256 samples was applied to the radar returns. The main lobe
of the Hamming window is inversely proportional to the window
length and the magnitude of its sidelobes is well attenuated.
We use an 80% overlap between adjacent windows in order to
minimize the effect of spectral leakage [30] and to better localize
the fall events (to make sure the event is not missed). We found
that lower amounts of overlap do not work as well. For example,
with 50% overlap, falls were not always completely localized.
With larger overlaps, the whole event is captured in at least
one window [31]; this cannot be assured with smaller overlaps.
Fig. 4(a) and (b) shows the time-frequency plot of the falling
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Fig. 5. Binary time-frequency signature. (a) Falling down. (b) Standing
up.

down and standing up activities, corresponding to the radar
return signals of Fig. 3, respectively, where the horizontal axis
is time and the vertical axis is frequency. The image intensities
indicate the energy corresponding to the micro motion signature
at each time instant [32]. It is seen from Fig. 4 that the energy
content of each activity is distinguishable in the time-frequency
domain. More specifically, a fall incident results in an instan-
taneous high-frequency content with a specific distribution of
energy over time, whereas a nonfall activity exhibits a lower
frequency peak with different energy distribution.

C. Binary Image Generation

Radar signals of fall and nonfall activities were processed and
converted into binary image representations. Each binary image
has a size of m1 ×m2 pixels, corresponding to m1 frequencies
and m2 time instants at which the spectrogram is computed. It is
known that the raw spectrogram images exhibit a high level of
noise, which may obscure the true signature of the activity under
study [26]. This may result in a lower classification performance,
especially when using a neural network. To address this issue,
a binary time-frequency signature of each activity was first
obtained by applying the k-means clustering algorithm [33] to
the time-frequency representations, i.e., pixel clustering. The
clusters were then passed through a median filter to remove the
outliers. In addition, a morphological opening operation was
performed to remove disconnected regions and fully preserve
the shape of the energy content of the activity. We do this by
creating a structuring element [34], which identifies the pixel
in the image that is being processed together with the adjacent
neighboring pixels. The result of this postprocessing is the sig-
nature of different activities. Fig. 5 shows binary time-frequency
signatures corresponding to the fall and nonfall spectrograms in
Fig. 4, respectively.

D. Deep Neural Network

Automatic feature extraction precludes the domain specific
feature extraction crafted manually by the experts. In order to
automatically extract features from the radar binary images, a
neural network comprising of convolutional and fully connected
(FC) layers was constructed. Fig. 6 shows the architecture of
the proposed convolutional neural network, and Table II gives
kernel sizes and output shapes for each layer. As discussed in
Section III-C, the time-frequency representation containing the

TABLE II
CONFIGURATION OF THE PROPOSED NETWORK

energy of an activity is converted into a binary image, which will
be denoted as Z. The image is then fed into the convolutional
neural network. The key attribute of this network is that it
contains different processing units such as convolution, pooling,
activation, and normalization.

Inspired by [35] and [36], we construct a neural network to
solve our binary classification problem by stacking two convo-
lutional layers and four FC layers. In the first convolutional layer
c1, 64 kernels {kc1

j }64
j=1 of size 3 × 3 were convolved with the

input images with a stride of 1. A bias value was then added
and an activation function was applied to the output resulting in
a feature map Zc1 with a depth of 64. The rectified linear unit
activation function (ReLU), defined as f(x) = max(0, x), was
employed. Each unit in a convolutional layer was connected to
a local patch in the feature maps of the previous layer via a set
of convolutional kernels.

In order to obtain distortion-invariant features and reduce
the spatial resolution of the feature map, a nonoverlapping
2 × 2 max-pooling (MP) layer p1 was used. The pooling was
performed by selecting the maximum values of the convolved
features among the adjacent neurons that are located in the
preceding convolutional layer.

The number of filters increases from the first to second
convolutional layer since the spatial size of the feature maps
decreases after pooling operation, and thus, the depth needs
to be increased by adding more filters. In view of this, in the
next convolution layer c2, the feature map from the previous
pooling layer Zc1p1 was convolved with 128 kernels {kc2

j }128
j=1

of size 3 × 3 with a stride of 1. A bias value was added and the
ReLU activation function was applied to the output, resulting
in a feature map Zc2 with a depth of 128. The second MP
layer p2 of size 2 × 2 was then applied. The convolutional
layers capture low-level features, while higher layers extract
higher-level features by combining low-level ones. In addition,
in the convolutional layers, a weight sharing mechanism exists
among the neurons that are located in the same feature map. In
the proposed network, the convolutional layers were followed
by four FC layers and one output layer for class prediction. The
four FC layers have 500, 200, 100, and 50 neurons, respectively.
The output of the second convolutional layer Zc2p2 was flattened
into a 1-D vector, resulting in parameter concatenation and used
as the input to the first FC layer. Neurons in each FC layer
have full connections to all neurons in the previous layer. Their
activations can be computed by applying a matrix multiplication
and a bias offset followed by the ReLU activation function for
the first four layers and the softmax function for the output layer.
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Fig. 6. Architecture of the proposed convolutional neural network with Convolutional, MP, and FC layers.

The softmax function is given by the following:

hr =
exp(Zr)

∑2
v=1 exp(Zv)

, for r = 1, 2 (2)

where Zr is the rth score of the output layer and hr denotes
the output of the softmax function, i.e., the probability of the
predicted classes. If Ntr is the number of trials, the actual
labels for each fall or nonfall are {li}Ntr

i=1, and the probabilistic
outcomes are hi, then the softmax cross-entropy cost function
L is defined as follows:

L = − 1
Ntr

Ntr∑

i=1

2∑

v=1

I(li = v)log(hv
i ) (3)

where I(.) is the indicator function. The entire network was
trained by means of the back-propagation algorithm [37] to
iteratively update the weights and minimize the cost function.
The Adam optimizer was used in the learning process, which has
been shown to provide fast convergence rates [38]. It is known
that the Adam optimizer combines the properties of the AdaGrad
and RMSProp algorithms and enables an optimization algorithm
to handle sparse gradients [38]. Through the optimization model,
the feature learning and classification are mutually enhanced
and the learned features gain more discriminative power for the
ultimate classification task.

In the proposed convolutional neural network, hyperparam-
eter selection was done by tuning the model with different
values of hyperparameters and selecting the one based on the
validation accuracy, i.e., a grid search optimization technique.
The hyperparameters of the proposed network are the learn-
ing rate, which determines the magnitude of weight changes
when a classification error occurs during the training phase, and
the drop-out regularization factor, which restricts the network
adaptation to the training data and, thus, avoids overfitting and
high-dimensionality issues.

E. Data Augmentation

Because falling is not a common human activity, fall data are
scarce. In order to ensure that the fall detection model has good
generalization, we employ data augmentation. Data augmenta-
tion artificially increases the number of exemplars or patterns
in the training set, so that the network never sees twice the
exact same image. This prevents the network from overfitting.
There are several ways of augmenting the data described in
the literature. They can be broadly divided into two groups,
namely, oversampling and data warping [39]. Oversampling
methods such as random over sampling or synthetic minority
oversampling technique artificially increase the exemplars. The
exemplars are nothing but copies of the existing ones in the
dataset. Data warping uses image transformation processes such
as geometric transformations, flipping, cropping, and translation
to produce exemplars, which are different from the existing
exemplars in the dataset. Fall detection using radars has sev-
eral dependencies such as different return power, presence or
absence of clutters, elevation and angle of the radars. As all
these variabilities cannot be captured in a dataset, data aug-
mentation is needed. Oversampling augmentation is unsuitable
because it will not produce exemplars that are representative
of these variabilities. Therefore, image transformations were
used to realize such feature variability and account for phys-
ically meaningful and intuitive interpretation of the activities.
The image transformations used in this work were rotation,
width shifting, height shifting, horizontal flipping, shearing,
and zooming. For instance, patterns resulting from horizontal
flipping and width shifting could represent fall/nonfall activities
at different distances from the radar sensor, while those obtained
using zooming and height shifting may account for falling down
at different angles relative to the radar. Note that the proposed
convolutional neural network aims to extract robust features to
correctly classify a variety of instances. Such robust features can
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TABLE III
CONFUSION MATRIX DEFINITION FOR THE FALL DETECTION PROBLEM

be learned only if a sufficiently large number of different types
of instances are presented to the network.

IV. RESULTS, CHALLENGES, AND FUTURE DIRECTIONS

In this section, the experimental results, obtained using the
proposed method, are presented. The performance of the con-
volutional neural network is compared with an auto-encoder
(AE) [26], a SVM [40], DTs, and KNN [4]. To evaluate the
performance of the proposed fall detection method, a set of
radar data, collected as described in Section II, was used. The
radar return signal was processed to obtain the spectrogram.
The spectrogram was treated as an image containing the energy
content of a particular activity. The image was then binarized and
further enhanced using the morphological opening operation.
In the experiments, the image size, discussed in Section III-C,
was fixed by setting the values of m1 and m2 to 129 and
139, respectively. The resulting binary image was augmented
to obtain enough data to train the proposed convolutional neural
network. The trained network is then used to test whether or not
a test image represents a fall incident.

To evaluate the classification performance of the proposed
method, a fivefold cross validation was performed. For the ease
of defining metrics, the true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN), corresponding
to the fall and nonfall activities, are defined in Table III. The
main diagonal entries are the correct classification rates for
fall and nonfall activities. The off-diagonal entries indicate the
misclassification rates.

The following metrics are used to evaluate the performance
of the proposed fall detection method:

1) Precision (PR), PR = TP
TP+FP

2) Recall or sensitivity (SE), SE = TP
TP+FN

3) Specificity (SP), SP = TN
TN+FP

4) False Positive Rate (FPR), FPR = FP
FP+TN

5) False Negative Rate (FNR), FNR = FN
FN+TP

6) F-score, F = 2TP
2TP+FP+FN .

Table IV gives various classification metrics obtained using
the proposed method and those of the other methods, namely,
KNN, DT, AE, and SVM. It should be noted that for all these
methods, the resulting binary images from Section III-C were
vectorized and used as the input to the classifier.

In the case of AE, we followed the approach in [26] to reduce
the dimensionality of the feature vector in such a way that the
binary images were compressed into 300 and 150 features using
two stacked encoders with l2 regularization. In addition, the
softmax regression classifier was used in the output layer. In the
case of KNN, different values for k were examined and the best
results, i.e., k = 1 were reported. In the case of SVM, linear

SVM (LSVM) and Gaussian SVM (GSVM) were employed.
The LSVM uses the l2 regularization and the squared hinge loss
function [41]. The parameters of the GSVM are the regulariza-
tion parameter C = 1, which aims at classifying the training
dataset by providing the model with freedom to select more
samples as support vectors and the cutoff parameter γ = 0.001,
which identifies the extent of the influence of a single training
sample (exemplar) [41]. The abovementioned model parameters
were tuned using a grid search on a validation set for higher
classification accuracy.

Table IV describes the classification metrics obtained when
each classifier was trained on 336 data samples, as well as the
same metrics when the classifiers were trained on an augmented
dataset (augmented by a factor of 10). The classifiers were
trained using the radar data for nine human subjects and tested
using the data from the tenth subject in a leave-one-subject-out
cross-validation sense (tenfold). It is seen from this table that the
proposed method outperforms the other methods when tested
with unseen set of data. When the number of data samples
increases, the performance improvement using the proposed
method is more significant than that using the other methods,
as evidenced by the specificity values. It should be noted that
the hierarchical features extracted from radar binary images are
the key to understand the fundamental composition of human
activities and determine whether or not a fall occurs during
human daily activities.

Tables V and VI give classification metrics obtained using a
fivefold cross validation for the proposed fall detection method
and those obtained using other methods, with original data
and with the data augmented by a factor of 10, respectively.
In the case of the DT approach, two attribute selection mea-
sures, namely, the Gini index (DTG) and information gain or
entropy (DTE) were considered [42]. It is seen from these tables
that the proposed method is capable of detecting falls with
higher accuracy, precision, and specificity values, indicating
the capability to better detect a fall incident when it occurs
and avoiding false alarms. Without data augmentation, DTG,
DTE, LSVM, GSVM, KNN, and AE achieve 81.30%, 82.47%,
89.01%, 85.71%, 92.84%, and 92.85% classification accura-
cies, respectively, while the proposed method outperforms the
other methods by providing 95.83% classification accuracy and
97.82% specificity. It is also seen from Table VI that when
the data are augmented, the proposed method detects the fall
incidents with a lower false alarm rate as evidenced by the higher
value of specificity. The overall result indicates that the proposed
method is effective in classifying fall from nonfall activities.
The superior performance of the proposed convolutional neural
network-based fall detection method can be attributed to the fact
that the proposed model finds the saliency of the signal in feature
representation more accurately than the other methods. This is
due to the fact that the convolutional neural networks make use
of hierarchical distributed representations.

The statistical significance of the proposed method was also
investigated. The p-value for a balanced one-way analysis of
variance (ANOVA) between different methods, when comparing
the classification accuracies, is 0.0299; when comparing pre-
cision values, it is 0.0333. This indicates that the differences
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TABLE IV
PR, SP, SE, FPR, AND FNR (%) FOR VARIOUS METHODS, IN A LEAVE-ONE-SUBJECT-OUT CROSS VALIDATION

The bold entities show the result of the proposed method.

TABLE V
PERFORMANCE METRICS FOR VARIOUS CLASSIFIERS

The bold entities show the result of the proposed method.

TABLE VI
PERFORMANCE METRICS FOR VARIOUS CLASSIFIERS AFTER

DATA AUGMENTATION

The bold entities show the result of the proposed method.

between the methods are significant. Fig. 7 shows box plots for
classification metrics of various methods. It is seen from this
figure that the proposed method using the convolutional neural
network provides higher accuracy and precision on a fivefold
cross validation. This figure also shows that the proposed method
provides lower standard deviation in both the metrics, indicating
the high level of agreement between the results of each fold.

Receiver operating characteristic (ROC) curves for various
methods were also obtained. Fig. 8 shows the ROC curves
for KNN-, AE-, and CNN-based methods obtained through
fivefold cross validation. The area under the ROC curve (AUC)
for each method was obtained from the corresponding average
ROC curve. It is seen from these figures that the proposed
method based on the convolutional neural network provided the
highest AUC, indicating its superiority to the other methods in
discriminating fall from nonfall activities.

We now compare the performance of the proposed fall de-
tection method to those presented in [26] and [43]. To this end,
as discussed in [26], three features, namely, extreme frequency
magnitude, extreme frequency ratio, and time-span of event,
were extracted from the spectrograms. These features were used
to classify the fall and nonfall activities using a SVM classifier. In
addition, as discussed in [43], several features including higher-
order statistics such as moments, cumulants, and the energy
of the normalized signal were extracted. We also extracted 27

Fig. 7. Box plots for classification metrics of various methods. (a)
Accuracy. (b) Precision.

TABLE VII
CLASSIFICATION METRICS (AC, PR, SE, SP) OBTAINED USING THE

PROPOSED FALL DETECTION METHOD AND THOSE OBTAINED USING [26]
AND [43] AND THE ONE WITH 27 FEATURES EXTRACTED FROM THE RADAR

DATA (27F ), IN A FIVEFOLD CROSS VALIDATION

The bold entities show the result of the proposed method.

features (27F ) including maximum, minimum, mean, standard
deviation, skewness, kurtosis, interquartile range, area under the
curve, area under the squared curve of the radar time series
signal, its first derivative, and its discrete Fourier transformed
version. The extracted features were classified using a SVM
classifier. Table VII gives classification metrics in fivefold cross
validation obtained using the proposed method and those of the
other methods. It is seen from this table that the proposed method
provides higher classification metrics as compared to the other
methods based on manual feature extraction techniques.

We also investigated the performance of the proposed fall
detection method when the network was trained on the dataset
collected from a set of subjects in one room and tested on the
dataset collected from different subjects in the another room.
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Fig. 8. ROC curves and AUCs obtained using fivefold cross validation for (a) KNN, (b) AE, and (c) proposed method.

TABLE VIII
CLASSIFICATION METRICS FOR VARIOUS METHODS, WHEN THE

CLASSIFIERS ARE TRAINED USING THE DATA COLLECTED IN ONE ROOM
AND TESTED AGAINST THE DATA FROM DIFFERENT SUBJECTS IN ANOTHER

ROOM IN A TWOFOLD CROSS VALIDATION

The bold entities show the result of the proposed method.

Table VIII gives classification metrics obtained in this scenario.
It is seen from this table that the proposed method generalizes
well to other unseen environments and datasets.

As discussed in Section III-D, the proposed convolutional
neural network automatically extracts features from the radar
returns. Visualizing the activations of the network is useful
for understanding how different layers transform their input
and reduce the size of the feature map. To understand the
automatically extracted features at each layer, feature maps
(activations) of the flatten layer, the fully connected layers, and
the output layer are depicted in Fig. 9. The convolutional layers
retain the shape existing in the input image. As we go deeper
into the layers toward the output layer, the activations become
increasingly abstract and less visually interpretable. In that case,
the network begins to encode higher-level concepts. Activations
in the higher layers carry increasingly less information about the
visual contents of the image, and increasingly more information
related to the class of the image. This is clearly visible in Fig. 9.
The cross-entropy loss and accuracy values for the training and
test sets were obtained using the proposed network. Fig. 10
shows cross-entropy loss and accuracy values on the training
and test dataset obtained using the proposed method with and
without data augmentation. The gradually decreasing trend of
the loss seen from this figure demonstrates that the network is
successfully trained after a fixed number of epochs. The accuracy
improves with the number of epochs and finally reaches a steady
state. It can also be seen from this figure that the use of data

augmentation helps the model to generalize better and improves
the classification accuracy.

In the proposed fall detection method, the range bin having
the highest variance was chosen to be the target range bin and
used for further processing. In addition, a range spread of four
consecutive bins for the target and the average scattered signal
over these range bins were also examined. However, only minor
difference in the performance was observed.

When the subject falls down perpendicularly to the radar line
of sight, the time-frequency representation and binary image are
both slightly different from falling down along the radar line of
sight. This results in confusion between fall and nonfall classes.
This confusion can be prevented and the fall detection rate can
be increased by employing multiple radar sensors [44]. Doing
so would raise the precision of fall detection by covering the
target from multiple directions and reducing the chance that the
target may be obscured from one of the sensors. In addition, as
discussed in [45], combining range features may further improve
the recognition accuracy, especially when the target motion is
perpendicular to the radar. Integrating range information as a
parallel input to the proposed convolutional neural network can
be a direction for future research.

So far, there is no automated system for human gait analysis
and fall risk assessment based on the radar, which is mostly due
to the lack of publicly available datasets. Previous researchers
have mostly collected their own data and tried to validate their
algorithms statistically. In view of this, benchmark datasets are
important to realize qualitative comparisons of new analysis
algorithms and pipelines. In order to help create standard bench-
mark datasets, the dataset used in this research work will be made
publicly available.

Radar-based indoor monitoring, and in particular radar-based
fall detection, is in its infancy. There is huge potential for more
advanced radars and algorithms to overcome the existing chal-
lenges. Radar-based systems may carry great potential as one of
the leading technologies in the future of indoor monitoring.

We are currently investigating the use of the micro-Doppler
radar to detect motion and falls through the fusion of the range-
Doppler image and extracted spectrogram images, as it is known
that the Doppler signature and rate of change in Doppler contain
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Fig. 9. Activations of (a) flatten layer, (b)–(e) FC layers, and (f) output layer, for one sample binary image.

Fig. 10. (a) Cross-entropy loss, and (b) accuracy values for the training
and test sets, with and without data augmentation, obtained using the
proposed convolutional neural network. The results are averaged over
tenfolds corresponding to each subject in a leave-one-subject-out cross
validation.

rich information about posture, movement, and sudden changes.
In addition, the Doppler rate may be identified by using two
radars which are synchronously capturing the information.

Fall detection using radars is only in its gestation stage.
Automatic real-time detection of falls using the radar is still
not a reality; distinguishing other activities of daily living such

as walking, running, sitting, standing from falls is also still in its
infancy. This article proposed a binary classification of fall from
a nonfall activity. A multiactivity classifier will be built in the
future to distinguish not only falls from nonfalls, but to classify
various types of activities. However, when multiple people are
in the view of the radar, activity monitoring becomes very
difficult. Future research will focus on automatic identification
and tracking of multiple people and also on building systems that
can learn activities in time, using unsupervised learning, through
extended observation in time. Also, current systems require large
datasets for training. Recently introduced ideas such as con-
trastive learning could be considered for enabling learning with
fewer examples. Also, as systems often get trained offline and are
required to work in a new environment, transfer learning prefer-
ably in an unsupervised manner will be considered in the future.

V. CONCLUSION

In this article, a novel radar-based fall detection method was
proposed based on time-frequency analysis and deep learning
techniques. Data were collected in room environments without
any constraints, including fall and nonfall activities. The radar
return data were preprocessed to determine the target range bin
and removed the effect of clutters. Time-frequency analysis was
performed by using the STFT and to obtain the spectrogram for
different activities. The spectrograms were further processed to
obtain binary images and enhanced using morphological opera-
tors. The binary images were augmented using class-preserving
transformations and fed into the proposed convolutional neu-
ral network for feature extraction. The proposed network was
devised by stacking convolutional and FC layers. Several ex-
periments were conducted to evaluate the performance of the
proposed fall detection method and to compare it with those of
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the other methods. The results showed that the proposed method
outperforms other methods in accuracy, precision, sensitivity,
and specificity. The performance of the proposed fall detection
method when the network was trained on a dataset collected from
a set of subjects in one room and tested on a dataset collected
from different subjects in another room was also investigated.
The higher classification metrics indicates the robustness of the
proposed method.
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