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Abstract—This work proposes a method for motor task recog-
nition in brain computer interfaces (BCI). The proposed method
is realized by EEG signals classification using time-dependent
regularized common spatial patterns and deep residual networks.
Unlike other existing methods, the proposed method relies on
both the spectral and temporal features by preserving the tempo-
ral resolution of the spatially-filtered EEG signals. These features
are projected onto an image representation and fed into a residual
network for a hierarchical feature learning and classification.
Experiments are carried out on benchmark datasets taken from
BCI competitions to evaluate the performance of the proposed
method and to compare it with other existing methods. The
binary classification results of the proposed method demonstrate
a superior performance in classification accuracy compared to
other existing methods.

Index Terms—Brain computer interface, EEG signal, residual
network, common spatial pattern.

I. INTRODUCTION

Imagining of hands, feet and tongue movements are motor
imagery (MI) tasks investigated in several brain computer
interface (BCI) studies [1], [2]. In most of these studies, elec-
troencephalogram (EEG) signals have been used to analyze
the brain activities, which are recorded using a number of
electrodes and have a high temporal resolution. A common
practice in analyzing the EEG signals for MI-BCI tasks recog-
nition is to perform some spatial filtering such as principal
component analysis or common spatial patterns (CSP) to not
only reduce the dimensionality of these signals but to prepare
them for the feature extraction procedure.

CSP and its variants have widely been applied in MI-BCI
studies to take into account distinct characteristics of EEG
signals by determining the directions in the pattern space
through projecting EEG signals onto a subspace and optimally
distinguishing between classes [3], [4]. Several variants of
CSP have so far been applied to EEG signals. Many of these
techniques have taken advantage of subband decomposition,
spatial or spectral weighting, and regularization in order to
extract highly discriminative features from the EEG signals.
However, it is challenging to take into account all the complex
patterns of EEG signals in designing an MI-BCI task recog-
nition problem manually. In other words, most of the existing
works rely on a limited number of features extracted from
recorded EEG signals in the time, frequency or time-frequency
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domain, which requires domain knowledge and may lead
to sub-optimal feature selection. One possible solution is to
devise automated, data-driven approaches that allow discovery
of the optimal discriminative features in EEG signals, which
is accomplished using deep learning. It is known that deep
learning has provided a different paradigm to motor task
recognition, and can work independently of or in tandem with
other feature selection methods.

Few attempts have so far been made to design an automated
feature extraction method from EEG signals [S]. In [6]-[9],
deep learning approaches were proposed for MI-BCI EEG
signal classification using time or frequency domain features
of EEG signals. In [10], deep belief networks were used to
model EEG waveforms for exploratory analysis, pre-training
and semi-supervised classification. Deep learning schemes
based on restricted Boltzmann machine were proposed in [11]
and [12], by obtaining frequency domain representations of
the EEG signals. In [13], different feature extraction methods
in frequency domain were investigated for MI tasks and
a convolutional neural network was used for classification.
In [14], an LSTM-based framework with a CSP-like channel-
weighting strategy was employed to extract features from EEG
signals.

These studies have shown the benefits of adopting deep
neural networks in systematically extracting features from
EEG signals and classifying them, even in the absence of a
large volume of data. However, to the best of our knowledge,
there is no other work in the literature distinguishing MI-
BCI EEG signal characteristics related to different tasks via
a spectral-temporal image representation and a deep residual
network for hierarchical feature extraction. In other words, the
existing works have not attempted to preserve the structure
of EEG signals within both the time and frequency domains
before feeding them into the neural networks. In this context,
a time-dependent regularized CSP feature learning in tandem
with a residual network is proposed. In the following sections,
the proposed task recognition method for BCI systems using
the proposed residual network is presented and its performance
is compared to some of the existing methods on EEG data
from different subjects taken from publicly available BCI
competition data sets.

II. DATA PREPROCESSING

In MI-BCT settings, the main goal is to discriminate brain
states using a limited number of trials. Thus, feature extraction
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TABLE I
DATA SET UNDER STUDY FOR PERFORMANCE EVALUATION OF THE
PROPOSED METHOD.

Subject AA | AL | AV | AW | AY
Trials 280 | 280 | 280 | 280 | 280
Training set (T,) | 168 | 224 | 84 | 56 | 28
Testing set (T) | 112 | 56 | 196 | 224 | 252

and classification of such data is a challenging task. To exam-
ine the performance of the proposed method, the EEG signals
are taken from a publicly available dataset, where the data
samples were collected from subjects performing a classical
ML, i.c., imagination of limbs movements. More specifically,
data set IVa from BCI competition IIl is selected, which
is comprised of EEG signals from 5 subjects, performing
280 trials of right hand and right foot MIs, recorded using
118 electrodes. During recording, EEG signals were initially
filtered between 0.5 and 100 Hz. A 50 Hz notch filter was
applied to suppress the line noise. In addition, in order to
remove eye blinking and muscle artefacts, the signals should
be further processed using bandpass filtering and smoothing
techniques. In the proposed MI-BCI task recognition method,
the EEG signals were bandpass filtered using a 5th order
Butterworth filter to extract contents of the signal in [7 — 30]
Hz. The signal was then smoothed using a weighted moving
average filter with a window size of 10 samples at a time [2].
Table I gives information about the subjects and the number
of training (7)) and test (1) trials used in the experiments.

I1I. PROPOSED TASK RECOGNITION METHOD

In this section, the proposed motor task recognition methods
based on automatic feature extraction from time-dependent
regularized CSP signals using the proposed residual network
is presented.

A. Time-dependent Regularized CSP

In order to extract the time-dependent regularized CSP
features from the EEG signals, the optimal spatial filters are
obtained by maximizing the following objective function:
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where C; is the spatial covariance matrix of class i, P(W) =
WILW is a Laplacian penalty function measuring how much
the spatially smooth filter W satisfies a given prior, « > 0
is a regularization parameter and L is the graph Laplacian
matrix derived from the graph weighting matrix K. A weighted
graph may be constructed as a function of proximity between
electrodes as given by

2
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where K consists of weights [kpqlnxn, P and ¢ are the
electrode positions, d(p,q) denotes the geometrical distance
between the two electrodes, and o4 specifies closeness level
of the two electrodes [15]. The normalized graph Lapla-
cian is defined as L = I — D_1/2KD_1/2, where 1 is
the identity matrix and D is the degree matrix given by
D = diag{zq k(1,q), >, k:(n,q)}. It is noted that the
regularization function P(W) ensures that neighboring elec-
trodes have relatively similar weights, i.e., it enforces smooth-
ness between the recorded signals from neighboring neural
populations.

The objective function has an analytical solution through
joint diagonalization of the covariance matrices and solving
a generalized eigenvalue decomposition problem. Figenvalues
1 and eigenvectors U of C= C, + C, are obtained as C =
UpU™"'. The class projection onto the first or last cigenvalues
ensures that the largest eigenvalue in one class correspond
to the lowest eigenvalue in the other class. It is noted that
the discriminatory nature of this technique is promising for
extracting features from the EEG signals. It is also noted that
only a small number of eigenvectors m << N, are selected
for discrimination analysis [16], where N, is the number of
EEG electrodes. The final projection matrix is defined as P =
U*W. The projection matrix is further used to spatially filter
EEG trials X; as Z; = PX,.

At this stage, the common approach to extract features from
EEG signals is to apply a log transformation to Z; in order to
project the data into a normal distribution [3], [4]. However,
in the proposed method, the spatially-filtered EEG signals are
projected onto an image representation. This is realized by
keeping the temporal resolution of Z; unchanged, resulting
in 2D features keeping the information with respect to both
the time and frequency domains. More specifically, instead of
using the log variance as measure of feature extraction, Z; is
constructed from the first and last m largest eigenvalues only
through spatial filtering, i.e., the dimension of the trial signals
is spatially reduced to 2m x Ny, where m is set to 3 and NV,
is the number of samples collected from each electrode. The
image representations are then fed into the proposed residual
network for automatic feature learning.

B. Deep Residual Network

Common approaches to MI-BCI EEG signal classification
include extraction of a set of features from EEG signals in the
time, frequency, or time-frequency domain. Any improvement
in the classification performance of such approaches is highly
reliant on the type of features extracted. Automatic feature
learning using neural networks has obviated the need for
manual feature engineering and domain knowledge of the data.

In the proposed method, a residual network is applied to
the time-dependent regularized CSP signals for automated
feature extraction. It is known that residual networks preserves
information across layers by providing direct gradient flow
through the bottom layers. This is realized by taking shortcuts
to jump over some layers in each residual block [17].

In the proposed method, the residual blocks are constructed
by stacking convolutional layers. Each convolutional layer ¢
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Fig. 1. Architecture of the proposed residual network for MI task recognition.

is followed by batch normalization (BN) and a rectified linear
unit (ReLU) activation function, i.e., f(z) = max(0,z). The
resulting [eature map S is obtained as S“ = S~ x K% +
b¢, where ¢ denotes the convolutional layer index, * is the
convolutional operator, K and b denote the trainable kernels
and biases, respectively. It should be noted that the number of
convolutional layers, number of kernels and kernel sizes are
optimized via random search optimization. In particular, in the
first residual block, there exist 3 convolutional layers {ci}?zl,

each having 4 kernels {k; }jzl of size 3 x 3. The relatively
small kernel sizes give rise to discover the local temporal-
spectral information of 2D regularized CSP more accurately.
The resulting feature map from the final convolutional layer
in the first block is added to the input image z, and the result
is passed through a ReLU. The output feature map y has a
depth of 4.

In the second residual block, a similar procedure is fol-
lowed with convolution layers having 8 kernels. The BN
is performed after each convolutional layer to improve the
network steadiness. The output of the second residual block
o goes to a 2D global maximum pooling (GMP) layer. This
pooling mechanism is selected to lower spatial dimensionality
of the extracted features and circumvent overfitting [18]. In the
output layer, the softmax activation function is used to map
the final non-normalized features to a probability distribution
over the predicted classes. The proposed residual network is
trained using the back-propagation algorithm. The learning
model minimizes the categorical cross-entropy cost function
using the Adam optimizer [19]. The learning rate equals to
0.0001 and the number of epochs, i.e., training iteration, is
set to 200.

IV. EXPERIMENTAL RESULTS

Experiments were conducted on a set of EEG signals to
evaluate the performance of the proposed task recognition
method. In the proposed method, the EEG signals are first
preprocessed and spatially-filtered using regularized common
spatial patterns, as discussed in Sections II and III. The
resulting 2D regularized CSP image representations are fed
into the proposed residual network to test whether the task is
right hand or right foot MI.

The classification accuracy of the proposed regularized CSP
(RCSP)-based method is obtained with both the residual and
convolutional neural networks (CNN). For CNN, similar to
the proposed residual network, the categorical cross-entropy

cost function and Adam optimizer are used in the training
process. It is noted that in RCSP-CNN, only one block of
the residual network is used without any skip connection
with the same network structure and hyperparameters. The
optimal values for o and o4 are obtained via grid searching,
when regularization parameter « is varying in [0 — 10_5]
and o4 is in [0.01 — 1.5]. Table II gives the classification
accuracy obtained using the proposed method along with
the performance achieved by alternative methods, namely,
linear discriminant analysis (LDA), decision trees (DT), and
multi-layer perceptrons (MLP). MLP is comprised of two
layers having 400 and 200 neurons, respectively. The hyper-
parameters are the drop out, which is set to 0.5 for each layer,
and the learning rate, which is set to 0.001. It is noted that the
results presented for each method are the best results obtained
using the optimal parameters found for each classifier using a
random search optimization technique.

It is seen from this table that the proposed method using
ResNet outperforms the other methods by yielding higher
classification accuracies on the test set for AA, AL and AY
subjects. In particular, the proposed method achieves 100%
and 86.90% accuracies for AL and AY subjects, respectively,
which are higher than those yielded by the other methods.
The superior performance of the proposed method using
residual networks is due to the fact that the structure of the
residual network can learn discriminative features of the 2D
RCSP signals more accurately than the other methods. In
addition, our RCSP-based method using CNN shows superior
performance in detecting motor tasks for subject AW. Notice-
ably, the proposed method based either residual network or
convolutional neural network performs better than LDA, DT
and MLP-based methods in recognizing MI tasks in a binary
classification problem by providing higher accuracy values.

The classification accuracy of the proposed method is also
compared to those obtained using other existing methods
on the MI-BCI EEG signal classification. To this end, the
complete dataset for each subject is split into five partitions,
i.e., 5-fold cross validation. Tables III gives the classification
accuracies of the proposed method as well as those of other
existing methods for various subjects. It is seen from this table
that the classification accuracy obtained using the proposed
method based on regularized CSP with residual network is
higher than those yielded by the other methods. The superior
performance of the proposed method in providing better class
discrimination and higher recognition accuracies can be at-
tributed to the fact that it takes into account both the spectral
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TABLE 1T
CLASSIFICATION ACCURACY OBTAINED USING VARIOUS METHODS USING TIME-DEPENDENT REGULARIZED CSP.

AA (168 Tr+ 112 Ts) | AL (224 T+ 56 Ts) | AV (84 T+ 196 Ts) | AW (56 T+ 224 Ts) | AY (28 T+ 252 T)
RCSP-ResNet 93.75 100 80.12 81.25 86.90
RCSP-CNN 93.75 96.43 83.16 85.27 83.33
RCSP-MLP 93.75 91.24 85.11 83.76 81.28
RCSP-DT 82.32 88.50 70.14 78.08 73.85
RCSP-LDA 55.46 86.79 85.33 63.19 57.91
TABLE III [2] G. Kalantar, H. Sadreazami, A. Mohammadi and A. Asif, “Adaptive

CLASSIFICATION ACCURACY OBTAINED USING THE PROPOSED METHOD
AS WELL AS THOSE YIELDED BY THE OTHER EXISTING METHODS BY
5-FOLD CROSS VALIDATION.

AA AL AV AW AY
SSRCSP [3] 70.54 | 96.43 | 53.57 | 71.88 | 75.39
FBRCSP [4] | 84.82 | 96.43 | 63.78 | 74.55 | 73.81
DTMKL [20] | 91.07 | 94.64 | 71.94 | 82.59 | 88.89
MSRCSP [21] | 69.64 | 96.43 | 59.18 | 71.88 | 52.78
SRCSP [21] 72.32 | 96.43 | 58.16 | 72.32 | 87.30
LRCSP [22] 79.46 | 98.21 | 72.45 | 87.95 | 87.7
Proposed 94.64 | 97.50 | 83.57 | 89.64 | 93.21

and temporal domain features simultaneously, as well as to the
reliance on hierarchical feature extraction using the residual
network. In particular, the proposed method outperforms its
closest competitors, LRCSP [22] and DTMKL [20], with an
improved classification accuracy of 7.7% and 6.8%, respec-
tively, averaged over all the subjects.

V. CONCLUSION

A new MI-BCI task recognition method has been proposed
using a time-dependent regularized CSP and supervised learn-
ing approach based on residual network. The EEG signals
were spatially-filtered with regularized CSP to obtain a 2D
signal keeping both the spectral and temporal resolutions.
These signals were fed into a residual network for automatic
feature learning. Experiments were conducted to assess the
performance of the proposed method and to compare it with
that of the existing works. The results have demonstrated that
the proposed method outperforms the other methods in terms
of providing higher classification accuracy across subjects.
The superior performance of the proposed method may be
attributed to the fact that, unlike the other methods, it preserves
the temporal behavior of EEG signals by constructing the
regularized CSP image representation and that it relies on
high-level feature extraction using residual network.
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