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Abstract—Falling down is one of the main reasons for hos-
pitalization among the elderly. Constant monitoring of such
vulnerable older adults and timely detection of fall incidents may
significantly improve healthcare services. This paper presents
a radar-based fall detection method using compressed features
of the radar signals. The compressed features are obtained by
using determinisitc row and column sensing. The time-frequency
analysis is first performed on the radar time series and resulting
spectrogram is projected onto a binary image representation.
The binary images are then compressed using a 2D deterministic
sensing technique by preserving the aspect ratio of the images
in the compressed domain. The performance of the proposed
method is evaluated using several classifiers such as support
vector machine, nearest neighbors, linear discriminant analysis
and decision tree. It is shown that the proposed compressive
sensing based method can improve fall versus non-fall activities
recognition, as evidenced by high classification metrics for low
compression ratios.

Index Terms—Smart home, biomedical signal processing, com-
pressive sensing, classification, fall detection.

I. INTRODUCTION

Human activity recognition techniques can be extended to
identify critical situations such as automatic fall detection [1].
Falling down is one of the greatest risks for seniors living
alone. Thus, developing new technologics for fall detection
and reducing the risk of injuries is crucial. Existing methods
mostly rely on the use of wearable accelerometers and/or
gyroscopes, cameras-either wearable or static, smart floors
and combination of several such methods. Non-contact indoor
monitoring has become popular for home care purposes,
especially for detection of vital signs or detection of falls in
health care applications. The radar-based sensing technology
is increasingly used in smart homes as it avoids the privacy
issue of the camera-based techniques [2] and precludes the
need for wearing a tag [3].

The use of radar in contactless medical sensing applications
has extensively been explored [4]. In [5], features were ex-
tracted from the cadence-velocity diagram of continuous wave
radar signals in order to detect and classify people based on the
Doppler signatures. In [6], a human gait classification method
was proposed by taking into account the motion signature from
arm and leg movements. In [7], using micro-Doppler signature,
different human activities over extended time duration, through
wall, and at multiple angles to the radar, were classified. In [8],
a human activity recognition method was developed based on
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radar micro-Doppler data by extracting features from time-
velocity and cadence-velocity domains.

Among radar sensing technologies, ultra-wideband radars
are promising candidates for short range localization, non-
contact indoor monitoring and fall detection [9]-[12]. There
exist several works that employ a radar system for fall de-
tection. For instance, a wavelet-based approach was devised
in [13] for fall detection. In [14], a fall detection method was
presented by applying a time-frequency analysis of the radar
returns and the events were classified by a sparse Bayesian
classifier using the joint statistics of three different features.
The basic drawbacks among such methods are the limited
number of features extracted and manual engineering of such
features. The results in these works have shown that any
improvement in the accuracy of the fall detection method
depends to a great extent on the type of features extracted.
However, none of these works have addressed the radar-based
fall detection problem using compressed features.

Compressive sensing (CS) may be used as a technique
for dimensionality reduction through projection of high-
dimensional sparse data into a lower dimensional measurement
space [15]. Performing learning directly in the compressed
domain, would significantly reduce the dimensionality of
high-dimensional feature space. In [16], classification was
attempted to the compressed domain signals in order to
detect faces. A theoretical analysis on the applicability of
compressed domain learning for support vector machine-based
classification has been studied in [17]. Compressed domain
learning has so far been used for applications ranging from
video streaming to language processing [18]. However, to the
best of our knowledge, detection of human fall using radar
signals in the compressed domain has not been reported.

In view of this, in this paper, a fall detection method is
proposed based on compressive sensing. The proposed method
is realized by projecting the spectrogram of the radar signal
onto a binary image representation followed by compressive
sensing technique. The compressed binary images are directly
used as input to a classifier to determine whether a radar data
of a human activity contains a fall incident or not. Several
classifiers such as decision tree, k-nearest neighbors, lincar
discriminant analysis and support vector machines are used
for studying the detectability using the proposed method.
Experiments were conducted to evaluate the performance of
the proposed fall detection method using compressive sensing
with different compression ratios.



II. EXPERIMENTAL SETUP AND MEASUREMENT

The radar used in this experiment is the Xethru X4MO03
development kit, which uses an ultra wide-band transceiver.
This particular radar is chosen because of its low cost, small
size and high spatial resolution. The experiments were con-
ducted in a room environment at the University of Ottawa
after obtaining approval from the University’s ethics board.
The room had the following dimension: 12.6 x 4.1 m?2. The
radar is mounted 1.5 m above the floor level. The sampling
rate of the radar is 200 Hz.

The dataset used in our experiments includes different types
of fall and non-fall activities performed by five different
healthy subjects aging from 20 to 26, namely, walking toward
radar and falling down at different distances to the radar i.e., 3
or 4 m, standing in front of radar and falling down at different
distances to the radar, standing and falling down perpendicular
to the radar line of sight, lying down with or without side
rolling or other movements, and standing up in front of the
radar, and lying down and standing up perpendicular to the
radar line of sight. Each experiment lasted 15 seconds, within
which only one of these activities occurred. The signals were
then digitized at a rate of 200 samples/second. The range of
the radar used in this study is set to 10 m.

III. PROPOSED FALL DETECTION METHOD

In this section, the proposed fall detection method based on
time-frequency representation of the radar return signals and
compressive sensing is presented.

The radar return signals are recorded into a matrix, where
each column represents the spatial samples from different
ranges (fast-time), while the data in each row corresponds to
observations recorded at different time intervals (slow-time).
The first 20 range bins, corresponding to 1 m radius, are noisy
and removed before further processing. It is noted that the
observations from the range bin having the highest variance
over slow-time is chosen to be the target range bin and used
for further processing.

A. Time-Frequency Analysis

In order to analyze the radar return signals, a joint time-
frequency representation is obtained by applying the short-
time Fourier transform (STFT) [11]. For a radar return
signal from the target range bin z[.], STFT is defined as
X[n,k] = Y02 z[r]W[r — n]exp(—j2nrk/N), where
W] is a finite length sliding window function, n is the time
index, ¥ = 0,1,..., N — 1 is the frequency index and N
is the number of frequency points. The squared magnitude
of STFT yields the spectrogram, i.e., S(n,k) = |X[n,k]|2,
and is represented by the hue of the point’s color in Fig. 1.
The image intensities indicate the energy corresponding to the
micro motion signature at each time instant [20].

In the experiments, the STFT is applied using a Hamming
window of size 256 samples [11]. Fig. 1 shows time-frequency
plots of the falling down and standing up activities, where
the horizontal axis is time and vertical axis is frequency. It is
seen from this figure that the energy content of these activities
are distinguishable in their time-frequency signatures. More
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Fig. 1. Time-frequency analysis: Spectrogram resulted from (a) Falling down,
(b) Standing up.

specifically, a fall incident results in an instantaneous high
frequency content with a specific distribution of energy over
time, whereas non-fall activity exhibits lower frequency peak
and different energy distribution.

B. Radar Binary Image Generation

Radar signals including fall and non-fall activities are
processed and projected onto image representation having
frequencies as rows and time instants as columns at which the
spectrogram is computed. It is known that the raw spectrogram
images exhibit a high level of noise, which may affect on the
true signature of the activity under study [21]. This may result
in a lower classification performance. To address this issue, a
binary time-frequency signature of each activity is obtained by
separating the target event from the background regions using
a threshold-based method. Fig. 2 shows binary time-frequency
signatures, corresponding to the fall and non-fall spectrograms,
respectively.

C. Compressive Sensing on Radar Binary Image
In this section, compressive sensing concept used to perform
compression on sparse radar binary images is presented. Let
us assume a signal x € RN, The goal in CS is to design
a measurement matrix ®,;«n, which transforms the N-
dimensional signal x € RY into a M-dimensional vector
y € RM where M << N, as given by
YMx1 = PuxNXNx1 M

The design criterion for measurement matrix, such as main-
taining restricted isometry property (RIP), ®,,«n has been



Fig. 2. Binary images obtained from spectrogram. (a) Falling down, (b)
Standing up.

discussed in [22]. In compressed domain applications, the
original signal is recovered from the compressive measure-
ments, yarx1 through solving an optimization problem [23].
It is known that random matrices satisfy RIP with high
probability [23]. However, it is challenging to realize random
matrices due to storage issue. In [24], a linear filtering-
based deterministic measurement matrix has been constructed,
known as deterministic binary block diagonal (DBBD) matrix.
Construction of a such matrix of size M x N may be regarded
as a shift-invariant linear filter followed by a decimation.
In the proposed method, DBBD matrix is used as preferred
measurement matrix for the following reasons:

1) As the matrix construction of DBBD is based on linear
filtering, the morphology of the binary images remain
unchanged in the compressed domain. No sophisticated
signal processing algorithms are required to be developed
before feature learning and classification in the com-
pressed domain.

Generation of the DBBD deterministic matrix requires no
multiplication and storage space. On the contrary, most
of the random matrices of size M x N require M x N
multiplications and storage space.

DBBD matrix is straightforward to implement. When
recovery is needed, the deterministic measurement matrix
provides guarantee in recovery without any probabilistic
notion.

2)

In traditional column-wise CS for 2D signal, individual
columns of a 2D signal Xy« v is sensed and a compressed do-
main representation Y psx v is specified [15]. In other words,
by repeating (1), N times, for N columns, the compressed
domain representation Y 7 v is devised. However, the aspect
ratio of the image is not maintained in the column-wise
approach. As a result, the number of measurements in the
compressed domain remains to be M x N. For large NV, the
number of measurements are large and significant reduction
in the dimensionality in the training set may not be obtained.
In order to preserve the aspect ratio of the images in the
compressed domain, a row and column-wise sensing-based 2D
CS technique is used in this work [25], where the compressed
measurement domain representation of the 2D compressible
signal X € RYXN g represented as Y.z, and can be
obtained as
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Fig. 3. Compressed radar binary images when from left to right p is 1, 0.5,
0.25 and 0.125, respectively.

It is to be noted that in addition to preserving aspect ratio of
the 2D signal in the compressed domain, the row and column-
wise CS further reduces the number of measurements, when
compared to the column-wise CS. In the compressed domain,
a total of M x M measurements are obtained in the row
and column-wise CS as opposed to M x N measurements
obtained by the column-wise 2D CS approach. Hence, the
dimensionality of the training set reduces, when learning
is performed on the compressed domain. It is also noted
that the radar binary images are compressed with different
compression ratios, i.e., p = AN/—IZQ is varying in [0.125 — 1].
Fig. 3 shows compressed images with different p values.

IV. RESULTS, CHALLENGES AND FUTURE DIRECTIONS

To evaluate the performance of the proposed fall detection
method, experiments were conducted on a set of radar data
collected in a realistic environment. The radar return signal
is processed to obtain the spectrogram. The spectrogram
is treated as an image containing the energy content of a
particular activity. The experimental results are obtained using
the proposed method with various classifiers such as support
vector machine (SVM) [26], decision tree (DT), k-nearest
neighbors (KNN) [27] and linear discriminant analysis (LDA).
To evaluate the classification performance of the proposed
algorithm, a 5-fold cross-validation is applied. Table I gives
classification metrics obtained using the proposed method
based on compressive sensing with various compression ratios.
The compressed images are vectorized and used as input (o
various classifiers such as SVM, KNN, DT and LDA. In the
case of KNN, different values for k are examined and the best
results, i.e., K = 1 is reported. In the case of SVM, linear
SVM is employed. In the case of the decision tree approach,
gini index (DTG) is considered. It is noted that the parameters
of each classifier are tuned using random search optimization.
It is seen from Table I that the proposed method is capable
of detecting falls with higher precision, recall and specificity
values. It is also seen from this table that increasing the
compression ratio from no compression p = 1 to p = 0.125
results in an improvement in classification metrics using SVM
and DTG classifiers as well as LDA up to p = 0.25. This
improvement may be attributed to eliminating redundant pixels
from the radar binary images and feeding classifiers with more
relevant features.



TABLE I
PRECISION (PR), RECALL (RE), SPECIFICITY (SP) (%) OBTAINED USING THE PROPOSED FALL DETECTION METHOD USING COMPRESSIVE SENSING
WITH VARIOUS COMPRESSION RATIOS IN A 5-FOLD CROSS VALIDATION.

p=1 p=0.5 p=0.25 p=0.125
Method PR RE SP PR RE SP PR RE SP PR RE SP
SVM 91.58 | 95.53 | 89.08 || 93.54 | 89.74 | 94.28 93.54 | 96.67 | 91.10 || 93.54 | 94.99 | 90.92
KNN 94.34 100 92.44 || 93.47 | 91.66 100 94.18 | 99.05 | 93.70 || 94.18 | 99.05 | 93.70
DTG 80.69 | 91.61 | 77.97 82.99 | 92.98 | 81.21 89.70 | 93.16 | 86.30 || 93.69 | 96.04 | 90.71
LDA 92.47 | 92.52 | 89.29 || 93.38 | 94.11 | 90.53 95.28 | 93.43 | 9291 86.56 | 90.35 | 84.50

V. CONCLUSION

In this work, a novel radar-based fall detection system
has been proposed based on time-frequency analysis and
compressive sensing. Fall and non-fall activity data have been
collected using a radar sensor in a room environment. The
time-frequency analysis has been performed by using the
short-time Fourier transform and obtaining the spectrogram
for different activities. The spectrograms have been further
processed to obtain binary images. The binary images are
then compressed using a 2D deterministic compressive sensing
technique by preserving the aspect ratio of the images in the
compressed domain. The compressed images are then used as
input to many classifiers including support vector machine,
nearest neighbors, lincar discriminant analysis and decision
tree. The experimental results have shown that the proposed
fall detection method using compressive sensing considerably
improves precision, sensitivity and specificity metrics.
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