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Abstract—The brain-computer interface is a technology that
allows a machine to connect with the human brain and work
based on the commands released by thoughts and activities
of the brain. Electrodes are placed on the scalp and the
changes in electric waves released by the brain are recorded
as Electroencephalography (EEG) signals. In this work, we
propose the use of generative adversarial networks and mu-
sigma methods to augment the EEG signals. Some of the existing
deep learning methods such as convolutional neural network and
recurrent neural network for classification of the EEG signals are
implemented and their classification performance is examined
with and without data augmentation. It is shown that the use
of data augmentation can improve the performance of the EEG
signal classification with deep learning models to a considerable
extend.

Index Terms—Brain computer interface, binary classification,
convolutional neural network, common spatial pattern, data
augmentation.

I. INTRODUCTION

Motor task imagery in brain-computer interface (MI-BCI)
comprises of detecting the motor actions such as arm, hand,
leg, foot, or tongue movement without the actual limb move-
ment [1], [2]. MI-BCI can bring a huge revolution in terms
of handling any machine just by stimulating thoughts and
activities of the brain. This can facilitate the lives of people
who are physically handicapped, for instance, a person in
a wheelchair can control the chair just with their thoughts
without any limb movements.

There has been a surge of interest in designing and devel-
oping learning methods for motor task recognition in MI-BCI
systems [3] . Most of the existing methods have been built on
the collection of commands as data from the brain by placing
electrodes on it and recording the FElectroencephalography
(EEG) signals. The EEG signals are known to be very noisy
and thus need to be pre-processed to remove their noise and
any existing artifacts [3]. A common practice in analyzing
the EEG signals after the pre-processing step is to perform
some spatial filtering such as principal component analysis or
common spatial patterns (CSP) to not just reduce the signal
dimensions but also to prepare the signals for further feature
extraction procedure [4].

There exist many works in which CSP and its variants
were used to spatially filter the EEG signals [4]-[8]. Some of
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these methods are using deep neural networks to automatically
extract features from the spatially-filtered EEG signals [4], [5].
Extracting features from the EEG signals even in the absence
of a large volume of data has proven deep learning an effective
way of automating this process [5].

However, there is still room for improving the performance
of these deep learning-based methods in motor task recog-
nition. In view of this, in this paper, we propose the use
of data augmentation based on deep convolutional generative
adversarial networks (DC-GANs) and mu-sigma to improve
classification accuracy of some of the existing deep neural
networks in classification of the spatially-filtered EEG signals.
To this end, for the motor task recognition of right foot or
right hand, we formulated a binary classification problem and
implemented four classifiers based on convolutional neural
network (CNN), recurrent neural network (RNN), multi-layer
perceptron (MLP) and long short-term memory (LSTM) net-
work.

II. DATA PREPROCESSING

In order to examine the performance of the various models
built in this work, the EEG signals data is taken from BCI
competition — III [3]. This dataset is comprised of signals
from 5 subjects (persons), AA, AL, AV, AW, and AY, each
having 280 trials of the right hand and right foot. Following
the approach proposed in [5], we process the EEG signals
using bandpass filtering using a Sth order Butterworth filter
in the range of [7 - 30] Hz. The filtered EEG signal is then
smoothed by a weighted moving average filter with a window
size of 10 samples at a time [2]. Table I lists the subjects and
training and testing splits of each subject.

To prepare data for the data augmentation and use them
as input to the deep learning models, the EEG signals are
spatially-filtered using a modified CSP method [2], by pre-
serving the temporal resolution of the spatially-filtered EEG
signals, i.e., 2D features in both the time and frequency do-
mains. More specifically, after applying CSP filter on the EEG
signal, we have 201 x 6 dimensional samples for each subject.
The 2D representations are then used in data augmentation.

III. DATA AUGMENTATION

Processing EEG signal has several challenges such as low
signal-to-noise (SNR) ratio, non-stationary characteristics of
the signal, and small size of the dataset [9]. The low SNR ratio,



TABLE I
DATA SET USED IN OUR EXPERIMENTS

Subject AA | AL | AV | AW | AY
Trials 280 | 280 | 280 | 280 | 280
Training set | 168 | 224 84 56 28
Testing set 112 56 196 | 224 | 252

as well as non-stationary characteristics, have been addressed
in the [10], [11]. The small size of the EEG dataset needs to
be addressed. For overcoming this small size data challenge,
in this paper, two methods have been applied: DC-GANs and
mu-sigma methods.

A. Data augmentation using DC-GANs

The DC-GANSs are generative [12] and unsupervised learn-
ing models that allow automatic discovery and learning of
patterns as well as regularities in the input data to generate
new outputs based upon the original dataset provided. The
DC-GANs model includes a generator model that generates
an augmented dataset as well as the real dataset, which are
both passed on to the discriminator which further creates a
generator loss and a discriminator loss. The model tries to
maximize the discriminator loss and minimize the generator
loss in order to generate augmented samples [13]. The gener-
ated data obtained from DC-GANSs for the two classes of right
hand and right foot are visualized in Fig. 1 using the t-SNE
visualization method.
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Fig. 1. Data visualization for DC-GANs method when subject AA is used.

B. Data augmentation using Mu-Sigma

The Mu-Sigma method allows adding and subtracting a
noise signal to the original input signal dataset for augmenting
the dataset [14]. The random noise signal is generated by
calculating the zero mean and variance of the individual
input signal dataset, as given in (1). Two extra samples
can be generated using randomly generated noise. Adding
and subtracting this generated noise creates two new signals
Xaugmented = X £ Noise dataset as shown in Fig. 2.

Noise ~ N(0, 0?) (D

The dataset augmented using this randomly generated noise
by adding and subtracting the same from the EEG signals is
visualized using t-SNE visualization in Fig. 3.
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Fig. 2. Two more signal generation by adding and removing randomly

generated noise from original signal
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Fig. 3. Data visualization for mu-sigma method when subject AA is used.

IV. DEEP LEARNING MODELS

In this work, four deep learning models are developed to
classify the motor task EEG signals into either right-hand or
right-foot task, namely MLP, CNN, RNN and LSTM. The
input to these models are the preprocessed EEG signals and
their augmented versions. All the models architecture and
hyper-parameters are tuned using keras hyperband [15] tuning
method. The performance of the classification models are
assessed by obtaining the confusion matrix and calculating
the accuracy metric, as given in (2)

TP+TN
TP+TN+FP+ FN’

where TP and TN are true positives and true negatives, while
FP and FN denote false positives and false negatives.

We now explain the model architectures for the deep learning
models used in our experiments. The MLP model is built by
one input layer followed up by 3 hidden deep layers having
200, 100 and 50 neurons, respectively and a single sigmoid
output, which is returning whether it is classified in a right-
foot class or right-hand class. ReLL.U activation is used in all
the hidden layers and the loss function used is binary cross-
entropy. CNN blocksO comprises of one input layer followed
by deep hidden layers consisting of the max-pooling layer and
batch normalization for each CNN layer. In our architecture,
we use 2 CNN blocks in the hidden layers each having a
Max-Pooling layer followed by a batch normalization, having
4 x 4 filters. The CNN blocks are followed by a fully-
connected layer with 10 neurons and one output layer which
is a single node sigmoid. It is noted that each hidden layer
includes ReLU activation, and a binary cross-entropy is used
as the loss function. The RNN model consists of an input

2)

Accuracy =



TABLE II
CLASSIFICATION ACCURACY OBTAINED USING DIFFERENT METHODS

MLP CNN
No-Augment | Mu-Sigma GAN No-Augment | Mu-Sigma GAN
AA 93.75% 91.96% 95.54% 94.64 % 93.75% 91.07%
AL 96.43% 96.43% 96.43 % 92.86% 92.86% 96.43 %
AV 94.39% 91.33% 92.86% 92.35% 88.27% 77.55%
AW 93.3% 91.07% 95.54% 89.73% 90.62% 91.07 %
AY 95.24% 95.24% 96.03 % 93.65% 94.84 % 91.67%
Overall 94.62% 93.2% 95.27% 92.64% 92.06% 89.55%
RNN LSTM
No-Augment | Mu-Sigma GAN No-Augment | Mu-Sigma GAN
AA 83.93% 88.39% 87.5% 85.71% 91.96% 92.86 %
AL 92.86% 91.07% 87.5% 91.07% 91.07% 92.86 %
AV 81.12% 83.67 % 82.14% 87.24% 89.8% 92.86 %
AW 80.8% 85.71% 82.59% 85.27% 87.5% 89.73%
AY 81.35% 86.51% 80.95% 88.49% 92.46 % 91.27%
Overall 84.01% 87.07 % 84.13% 87.55% 90.55% 91.91%
layer followed by 2 simple RNN layers containing 28 and TABLE III

12 neurons,respectively, which is followed by 2 dense layers
having 16 and 10 neurons. LSTM comprises of an input layer,
LSTM hidden layers and an output layer. We use a stack
LSTM with two layers having 24 and 20 neurons in each
layer, respectively, and 2 subsequent fully-connected layers
each having 16 and 6 neurons, respectively. The activation
function used for the hidden deep layers in this architecture is
ReLU and binary cross-entropy is used as the loss function.
The output layer consists of a single sigmoid activated node.

V. EXPERIMENTAL RESULTS

As discussed in Section II, the EEG signals were spatially-
filtered using CSP method and the filtered version was used
to train different classification models. Data augmentation was
also performed to increase the number of EEG samples.

The classification accuracy of each model is listed in Table
I. Accuracy for each subject and overall accuracy for the
model were given in this table. In addition, we compared the
classification accuracy of different methods with and without
data augmentation. It is seen from this table that the overall
accuracy of the MLP model without using data augmentation
is 94.62%, which is higher than current state-of-the-art. The
same model was used with the augmented data using mu-
sigma and DC-GANs methods. The accuracy achieved with
mu-sigma and DC-GANs augmentation methods is 93.20%
and 95.27%, respectively. For the CNN model, the overall
classification accuracy is 92.64% without data augmentation,
while using mu-sigma and DC-GANs augmentation methods,
the accuracy is 92.06% and 89.55%, respectively. In case of
RNN, the classification accuracy with is 84.01%, 87.07% and
84.13%, respectively without augmentation, with mu-sigma
and with DC-GANSs. From this table, it can be seen that using
the LSTM model, the classification metric was improved with
and without data augmentation.

We also compared the performance of the proposed models
with data augmentation to some of the state-of-the-art meth-
ods. Table III gives the classification accuracy comparison

CLASSIFICATION ACCURACY OF THE PROPOSED METHOD WITH THOSE
YIELDED BY THE OTHER METHODS

AA AL AV AW AY

LRDS [16] 80.4 94.6 50.0 90.6 83.3

FBRCSP [17] | 84.82 | 96.43 | 63.78 | 74.55 | 73.81
EEGCAPS [5] | 85.50 | 97.52 | 62.15 | 94.70 | 83.57
MLP_GAN 95.54 | 96.43 | 92.86 | 95.54 | 96.03

using different methods. It is seen from this table that the
proposed method with DC-GAN data augmentation achieves
higher classification accuracy than the other methods.

From the two tables, it was shown that the augmented
dataset with DC-GANSs could provide improved classification
accuracy results across subjects especially when MLP and
LSTM models were used. In addition, we observed that mu-
sigma augmented dataset provided higher classification metrics
when using RNN model. As compared to the state-of-the-art
methods, better results were achieved with and without data
augmentation using the MLP model.

VI. CONCLUSION

In this paper, we have proposed a a classification method for
recognizing brain-wave motor imagery tasks in MI-BCI sys-
tems. The EEG signals were first pre-processed and spatially-
filtered using the modified common spatial paterns method and
the resulting 2D signal was used as input to some deep learning
models, namely, MLP, CNN, RNN and LSTM. Since, the size
of recorded EEG signal dataset from MI-BCI was small, we
performed data augmentation using two methods, namely, mu-
sigma and DC-GAN:Ss, to train our models with even more pre-
cision and overcome overfitting. All the implemented models
were evaluated on a dataset taken from BCI competition III.
We conducted several experiemnts to assess the performance
of the proposed methods and to compare them against some of
the state-of-the-art methods. It was shown that as compared to
the other methods, better classification accuracy was achieved
with and without data augmentation using the MLP model.
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