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ABSTRACT
A new contourlet-based method is introduced for reducing
noise in images corrupted by additive white Gaussian noise.
It is shown that a symmetric normal inverse Gaussian distri-
bution is more suitable for modeling the contourlet coeffi-
cients than formerly-used generalized Gaussian distribution.
To estimate the noise-free coefficients, a Bayesian maximum
a posteriori estimator is developed utilizing the proposed dis-
tribution. In order to estimate the parameters of the distribu-
tion, a moment-based technique is used. The performance of
the proposed method is studied using typical noise-free im-
ages corrupted with simulated noise and compared with that
of the other state-of-the-art methods. It is shown that com-
pared with other denoising techniques, the proposed method
gives higher values of the peak signal-to-noise ratio and pro-
vides images of good visual quality.

Index Terms— Contourlet transform, image denoising,
normal inverse Gaussian distribution, maximum a posterior
estimator.

1. INTRODUCTION

Image denoising is an important image processing problem,
which is realized by reducing noise from an image and pre-
serving its features. Noise removal problem using multiscale
transforms have been investigated in many recent works [1]-
[4]. The contourlet transform-based approaches have led to
a significant success in image denoising as compared to for-
mer wavelet-based methods [5], [6]. Usually, the threshold-
ing of the contourlet coefficients is performed using a sim-
ple soft or hard thresholding function. However, it has been
shown that a shrinkage function using Bayesian approach can
provide noise reduction performance superior to that of the
thresholding schemes [1], [2]. Such a shrinkage function can
be developed based on the assumption of mutually indepen-
dent coefficients by minimizing a Bayesian risk under the
maximum a posteriori (MAP) criterion. In this method, the
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contourlet transforms are modelled by a particular probabil-
ity density function (PDF). The performance of the Bayesian
MAP estimator depends on the correctness of the contourlet
coefficients prior. The objective of this paper is to introduce
a new MAP-based image denoising method in the contourlet
domain using the normal inverse Gaussian distribution as a
prior for contourlet coefficients. It is known that the con-
tourlet subband coefficients of an image have significantly
non-Gaussian and heavy-tailed properties that are best de-
scribed by heavy-tailed distributions such as formerly used
generalized Gaussian distribution [7], [8]. In this work, we
propose the global modeling of the contourlet coefficients of
an image by the normal inverse Gaussian (NIG) PDF [9]-[11].
Thus, the MAP estimator based on NIG model is developed
and a modified shrinkage function corresponding to this esti-
mator is obtained. A moment-based method is used for esti-
mating the parameters of the NIG distribution from the noisy
coefficients.

The paper is organized as follows. In Section 2, the pro-
posed NIG model for the contourlet coefficients is presented.
The image denoising algorithm using MAP-based estimator
is described in Section 3. Experimental results are presented
in Section 4. Section 5 concludes the paper.

2. PROPOSED MODELING

In view of the fact that the contourlet coefficients of an image
are non-Gaussian [6]-[8], i.e., having large peaks around zero
and tails heavier than that of a Gaussian PDF, a proper dis-
tribution to model the statistics of the contourlet coefficients
would be a heavy-tailed PDF. It has been shown in [6] that the
generalized Gaussian (GG) distribution can model the con-
tourlet coefficients. In this work, we propose using the normal
inverse Gaussian (NIG) distribution to model the contourlet
coefficients of an image as an alternative to the GG distribu-
tion. The NIG distribution is a variance mean-mixture of a
Gaussian PDF with an inverse Gaussian PDF [9], [10]. The
density function of a random variable X ∼ NIG(α, β, µ, δ)
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is given by

PNIG(x) =
αδeδγ+β(x−µ)

π

K1α
√
δ2 + (x− µ)2√

δ2 + (x− µ)2
(1)

where K1 is the modified Bessel function of the second kind
with index 1 and γ = (α2 − β2)1/2. The shape of the NIG
distribution is specified by four parameters, namely, α, β, µ
and δ, which are shape, skewness, location, and scale param-
eters, respectively. The parameters are bound as 0 ≤ |β| < α
, δ > 0 and −∞ < µ < ∞. For zero-mean and symmet-
ric data distribution µ = β = 0. The PDF of the empirical
data for the two finest subbands of the Barbara image as well
as that of the GG and NIG distributions are shown in Fig. 1.
From this figure, it is seen that the NIG prior provides a better
fit to the empirical distribution than that achieved by the GG
distribution. The Kolmogorov-Smirnov (KS) statistic given
by max|

∫
Pf (f) − P̂f (f)df |, in which Pf (f) denotes the

PDF of the random variable and P̂f (f) represents the PDF of
the empirical data, is also used to quantify the closeness of
the empirical data to an assumed prior for the contourlet co-
efficients. The value of KS statistic is found to be 0.0926 for
the NIG and 0.1358 for the GG distribution, indicating that
the NIG distribution fits the empirical data more closely than
the GG distribution does. Similar results are also observed
for other test images. In order to estimate the NIG parame-
ters, we use its moment generating function M(t) = E[etx],
which is given by

MNIG(x) =

exp
(
µt+ δ

(√
α2 + β2 −

√
α2 − (β + t)2

))
(2)

The first four moments of the random variable X are given
by

E(X) = µ+
δβ

γ

V (X) =
δα2

γ3

S(X) =
3β

α(δγ)1/2

K(X) =
3(1 + 4(βα )

2)

δγ
(3)

Then, the parameters of the NIG distribution can be estimated
through inserting the sample moments mi, i = 1, 2, ... , into
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Fig. 1: PDFs of empirical data (solid) as well as the GG (dotted) and NIG (dashed)
distributions for the two finest subbands of the Barbara image.

(3) and solving for each parameter as

γ̂ =
3

m2(3m4 − 5m2
3)

1/2

β̂ =
m2m3γ̂

2

3

µ̂ = m2 −
β̂δ̂

γ̂

δ̂ =
m2γ̂

3

(β̂2 + γ̂2)
(4)

3. BAYESIAN MAP ESTIMATOR

Suppose that a noisy image is decomposed to j = 1, ....J
scales and d = 1, ..., D direction subbands by the contourlet
transform. Then, we have ydj (m,n) = xdj (m,n) + ηdj (m,n),
where η is the noise term which is supposed to be reduced.
In order to estimate the noise-free coefficients x in contourlet
domain, a Bayesian MAP estimator is developed through
modeling the contourlet coefficients of a noisy image by the
NIG PDF. The Bayesian MAP estimator of x, given noisy
observation y, can be derived as

x̂(y) = argmaxPx|y(x|y) (5)
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According to the Bayesian rule, (5) can be rewritten as

x̂(y) = argmaxPy|x(y|x) (6)

where Px(x) is the PDF of the contourlet coefficients of a
noise-free image. Then, (6) can be rewritten as

x̂(y) = argmaxPη(y − x)Px(x) (7)

where Pη(η) is the noise PDF. In the proposed denoising
method, the noise is assumed to be white Gaussian with a
zero mean and a standard deviation of ση . If ση is unknown,
it may be estimated by applying the robust median absolute
deviation method [12] in the finest subband of the observed
noisy coefficients. The PDF of noise is given by

Pη(η) =
1√
2πσ2

η

exp(− η2

2σ2
η

) (8)

To obtain the MAP estimate, after inserting (8) into (7), the
derivative of the logarithm of the argument in (7) is set to zero
resulting in

x̂− y
σ2
η

+
∂

∂x
(−ln(Px(x))) = 0 (9)

To ensure the consistency of the signs of x̂ and y, an approxi-
mate bounded solution of (9) is obtained as [13]

x̂(y) = sign(y)(|y| − σ2
η|M |)+ (10)

where (z)+ = max(z, 0) and

M = −β +
2(y − µ)

σ2 + (y − µ)2

+
α(y − µ)√
δ2 + (y − µ)2

K0(α
√
δ2 + (y − µ)2)

K1(α
√
δ2 + (y − µ)2)

(11)

Thus, the denoising method can be summarized as follows

1. Apply the contourlet transform on the noisy image and
obtain the contourlet coefficients.

2. Estimate the parameters of the NIG distribution from
the noisy coefficients by using (3) and (4).

3. Estimate the noise-free coefficients of all detail sub-
bands using the Bayesian MAP estimator in (10).

4. Apply the inverse contourlet transform on the estimated
noise-free coefficients to obtain the denoised image.

Table 1: PSNR VALUES OBTAINED USING DIFFERENT DENOISING METHODS
FOR TWO OF THE TEST IMAGES, THE BARBARA AND PEPPERS IMAGES

Standard deviation
Method 10 15 20 25

Barbara

Noisy image 28.13 24.61 22.11 20.17
Proposed 31.23 29.51 28.37 27.29
Adaptive-shrink - 29.96 28.36 27.23
SURE-shrink 28.20 24.64 22.13 20.19
Bayes-shrink 30.28 27.46 26.09 25.56
Adaptive wiener filter 28.31 27.37 26.44 25.21
Visu-shrink(soft) 27.34 24.44 22.19 20.06
Visu-shrink(hard) 28.78 26.85 25.46 24.46

Peppers

Noisy image 28.13 24.61 22.11 20.17
Proposed 32.56 31.11 29.30 27.41
Adaptive-shrink 31.95 30.01 28.37 27.23
SURE-shrink 28.20 24.65 22.13 20.18
Bayes-shrink 30.97 29.63 28.94 26.85
Adaptive wiener filter 31.80 29.56 28.41 27.23
Visu-shrink(soft) 29.70 27.88 25.31 23.20
Visu-shrink(hard) 29.34 28.12 27.26 26.50

4. SIMULATION RESULTS

The performance of the proposed method is verified by con-
ducting experiments on the standard test images and compar-
ing the results to that obtained by using some of the existing
methods, namely, adaptive wiener filter, Visu-shrink (soft and
hard), adaptive-shrink [1], Bayes-shrink [2] and SURE-shrink
[14]. The experiments are performed on images corrupted
with various levels of Gaussian noise, specifically ση varying
from 10 to 25. The noisy image is transformed by the con-
tourlet transform with three levels of decomposition and 8,
8 and 4 directions from finer to coarser scales, respectively.
Since the contourlet transform is a shift-variant transform, in
the proposed contourlet domain denoising, in order to over-
come the possible Pseudo-Gibbs phenomena in the neighbor-
hood of discontinuities, the cycle spinning method [15] is per-
formed on the observed data. The peak signal-to-noise ratio
(PSNR) is used as a subjective performance criterion. Table
I gives the values of PSNR for some of the existing methods
for two of the test images, Barbara and Peppers. It can be
seen from this table that the proposed method generally yields
higher PSNR values for a given range of noise standard devi-
ations. The denoised Barbara image obtained from various
methods with ση = 10 is illustrated in Fig. 2. It can be seen
from this figure that the proposed denoising method gener-
ally provides better visual quality than some of the existing
methods.
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5. CONCLUSION

In this work, we have proposed a new image denoising
method in the contourlet domain. The proposed method
has been obtained by modeling the contourlet coefficients
using the normal inverse Gaussian distribution. It has been
shown that this distribution can model the contourlet subband
coefficients more accurately than formerly-used generalized
Gaussian distribution can. The noisy image has been de-
composed into various scales and directional subbands via
contourlet transform. The noise in all detail subbands has
been removed by a closed-form Bayesian MAP estimator
using the NIG prior. In order to estimate the parameters of
the assumed distribution, a moment-based method has been
used. Experiments have been carried out to compare the per-
formance of the proposed method with that provided by some
of the existing methods. The simulation results have shown
that the proposed denoising method outperforms some of the
existing methods in terms of the PSNR values and provides
superior visual quality denoised images.
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