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In the past decade, several image denoising techniques have been developed aiming at recovering signals
from noisy data as much as possible along with preserving the features of an image. This paper proposes
a new image denoising method in the contourlet domain by using the alpha-stable family of distribu-
tions as a prior for contourlet image coefficients. The univariate symmetric alpha-stable distribution
(SαS) is mostly suited for modeling of the i.i.d. contourlet coefficients with high non-Gaussian property
and heavy tails. In addition, the bivariate SαS exploits the dependencies between the coefficients across
scales. In this paper, using the univariate and bivariate priors, Bayesian minimum mean absolute error
and maximum a posteriori estimators are developed in order to estimate the noise-free contourlet
coefficients. To estimate the parameters of the alpha-stable distribution, a spatially-adaptive method
using fractional lower order moments is proposed. It is shown that the proposed parameter estimation
method is superior to the maximum likelihood method. An extension to color image denoising is also
developed. Experiments are carried out using noise-free images corrupted by additive Gaussian noise,
and the results show that the proposed denoising method outperforms other existing methods in terms
of the peak signal-to-noise ratio and mean structural similarity index, as well as in visual quality of the
denoised images.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Denoising is a problem of estimating the noise-free image from
noisy observations while preserving the image features. The image
denoising techniques may be classified into spatial [1,2], and
transform domain [3–7] approaches. The image denoising in the
transform domain has attracted considerable interest in view of its
improved performance at recovering signals from noisy data. In the
transform domain approach, denoising process is performed on the
transformed coefficients of different transforms such as wavelet
transform [5,6]. In fact, the wavelet shrinkage method, proposed by
Donoho [7], is the most demonstrative one in which a simple and
non-probabilistic thresholding is used to remove noise from an
image. However, it is known that the wavelet transform is good at
isolating discontinuities at edge points and cannot efficiently cap-
ture the smoothness along the contour [8,9]. In addition, applying
wavelet to an image results in capturing limited directional in-
formation. In [10], the principal component analysis has been pro-
posed to overcome the drawbacks of the wavelet transform in
ad).
highly-structured images. However, these components are highly
affected by the noise. In [11], the K-SVD algorithm has been pro-
posed for the same purpose. However, exhaustive search in learned
dictionaries gives rise to a time-consuming algorithm. Another class
of image denoising techniques is the non-local means (NLM) algo-
rithms [12–18]. The NLM algorithms estimate a pixel by a weighted
average of the local and non-local pixels throughout the image and
perform denoising by exploiting the natural redundancy of the
patterns inside an image. In [19], similar to motion estimation al-
gorithms, a block-wise matching has been used to preprocess the
noisy image followed by a transform domain shrinkage, known as
BM3D. However, the accuracy of such block correlations is highly
dependent on the noise. In [20], a patch-based locally-optimal
Wiener filter has been proposed for image denoising. This method
uses similar patches to estimate the filter parameters. In [21], a
spatially adaptive iterative singular-value thresholding method has
been proposed, which provides slightly better performance in terms
of peak signal-to-noise ratio (PSNR) than that provided by BM3D.

To enhance the sparsity and effectively capture the directional
information in natural images, other multi-scale and multi-resolu-
tional transforms, such as wavelet-packets [22], complex wavelet
[23–25], curvelet [26], or contourlet [8,9,27–29] transforms, have
been proposed. The better sparseness and decorrelation properties of
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these transforms result in improved image denoising schemes. In
[24,30], the image denoising is performed in complex wavelet do-
main, which provides more directionality than that provided by
wavelet, yet is not efficient to handle 2-D singularities. In [26], the
curvelet domain image denoising has been proposed. The curvelet
transform provides higher directional information of an image re-
sulting in a denoising scheme with visually improved image and
more edge preservation. However, the curvelet transform has ori-
ginally been defined on concentric circles in the continuous domain
and the process of discretization is complex and time-consuming.
Therefore, to overcome these disadvantages of the curvelet trans-
form, the contourlet transform has been proposed in [9].

The contourlet transform provides not only the multiscale and
time-frequency localization features of the wavelet transform, but also
offers a higher degree of directionality with better sparseness. In view
of this, it has been shown in [9] that image denoising in the contourlet
domain is superior to that in the wavelet domain. Most of the image
denoising algorithms in the contourlet domain have been developed
based on the thresholding or shrinkage functions [9,27], in which the
coefficients with small magnitudes are simply set to zero, while the
rest are kept unchanged in the case of hard-thresholding, and shrunk
in the case of soft-thresholding.

In recent years, statistical models have been adopted for the
transform domain coefficients in which the image and noise are
modeled as random fields and Bayesian methods are employed to
develop shrinkage functions for estimation of the noise-free coeffi-
cients from the noisy observations. It is to be noted that the prior
distributions for the original image and the noise have considerable
effect on the performance of the denoising process. Several prior
distributions have been employed to characterize the transform
coefficient properties such as their sparsity, i.e., having a large num-
ber of small coefficients along with a small number of large coeffi-
cients [5,6,25,31–38]. The contourlet coefficients have been shown to
be highly non-Gaussian [9,39–41], i.e., having large peaks around zero
and tails heavier than that of a Gaussian probability density function
(PDF). In view of this, the contourlet coefficients have been modeled
formerly by the generalized Gaussian distribution [9].

Through modeling of the actual data, we have shown in [40,41],
that the contourlet-domain subband decomposition of real images
has significant non-Gaussian statistics that are best described by fa-
milies of heavy-tailed distributions, such as the alpha-stable family.
Motivated by the modeling results, in this work, we propose a new
image denoising technique in the contourlet domain based on the
alpha-stable family of distributions as a prior for the contourlet
coefficients. We will derive the Bayesian minimum mean absolute
error (MMAE) and maximum a posteriori (MAP) estimators using the
alpha-stable distribution to obtain the noise-free contourlet coeffi-
cients. We first assume that the contourlet coefficients are in-
dependent and identically distributed by the univariate alpha-stable
distribution. Then, we consider the across-scale dependencies of the
contourlet coefficients by employing the bivariate alpha-stable dis-
tribution to capture these dependencies. In order to estimate the
parameters of the model, we propose a spatially-adaptive method
based on fractional lower order moments. An extension to color
image denoising will also be developed. Several experiments are
conducted to evaluate the performance of the proposed denoising
scheme and to compare it with those of the current state-of-the-art
techniques. The estimated images are compared with the original
ones in terms of the PSNR and mean structural similarity (MSSIM)
index, as well as in visual quality of the denoised images.

The paper is organized as follows: Section 2 presents briefly the
contourlet transform. In Section 3, the alpha-stable distribution
and results on modeling the contourlet coefficients of images
using this distribution are presented. In Section 4, the image de-
noising algorithm based on either the MMAE or MAP estimator is
presented. In Section 5, the performance of the proposed
algorithms is examined and compared to those of the other ex-
isting methods. Section 6 concludes the paper.
2. The contourlet transform

The contourlet transform, a new image decomposition scheme
proposed in [9], provides an efficient representation for two-di-
mensional signals with smooth contours and in this case, outper-
forms the wavelet transform, which fails to recognize the smooth-
ness of the contour. The contourlet transform also has the multiscale
and time-frequency localization features of the wavelet transform
[42]. In addition, it offers a higher degree of directionality with better
sparseness. Further, in view of the use of iterated filter banks, it is
computationally efficient [9]. There are number of other structures,
such as the complex wavelet [23], ridgelet [43,44] and curvelet
[45,46], that also provide multiscale and directional image re-
presentation. However, most of these structures are not flexible in
the sense that one cannot use different number of directions at each
scale. Moreover, since the contourlet transform has been introduced
in the discrete domain, it overcomes the blocking artifact deficiency
of the curvelet transform (Fig. 1). It should be noted that the use of
downsamplers and upsamplers in the structure of the contourlet
transformmakes it shift-variant, which may produce artifacts around
the singularities, e.g., edges. Hence, the cycle spinning method
[27,47] is employed to compensate for the lack of translation in-
variance. It is a simple, yet efficient, method to improve the denoising
performance for a shift-variant transform. In fact, the cycle spinning
is to average out the translation dependence of the subsampled
contourlet transform and can be expressed as
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in which I and Î are noisy and denoised images, CT and ICT are the
contourlet transform and its inverse, respectively, Sm n, is the cycle
spinning operator with (m,n) as shifts in the horizontal and vertical di-
rections, and h is the denoising operator in the contourlet domain [47].
3. Modeling of contourlet coefficients using the alpha-stable
distribution

In order to model the contourlet subband coefficients of an
image, we propose the use of αS S distribution as a prior for the
contourlet coefficients of a noisy image. A random variable

γ β δ∼ ( )αX S , , with univariate alpha-stable distribution is de-
scribed by its characteristic function given by [48]
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and α is a characteristic exponent, α( < ≤ )0 2 , β ∈ [ − ]1, 1 is a
skewness parameter, Rδ ∈ is a location parameter and γ > 0 a
dispersion parameter. For a particular class of the alpha-stable dis-
tributions, called the standard symmetric alpha-stable (SαS) dis-
tribution, δ β= = 0. The characteristic exponent α is the most im-
portant parameter in determining the shape of the distribution
[48,49]. The smaller the value of α, the heavier the tail of the dis-
tribution. This implies that random variables following the SαS dis-
tribution with small characteristic exponents are highly impulsive. In
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Fig. 1. Block diagram of the contourlet filter bank structure. (a) In analysis, the Laplacian pyramid is applied to the original image resulting in a coarse image, denoted by L,
and a residual image, denoted by R. The residual image is fed into the directional filter bank to obtain directional information. (b) In synthesis, the original image is
reconstructed using the same filters for the Laplacian pyramid as in analysis part.

Fig. 2. PDF of the empirical data as well as that of the SαS, Levy and GG distribu-
tions for the Barbara image in the finest subband.

Table 1
KSD values of the SαS, Cauchy, GG, Laplacian and Levy distributions in the modeling
of contourlet coefficients averaged over a set of 10,000 images taken from the
dataset in [50], Sij denoting the subband in scale i and direction j.

Direction KSD

SαS Cauchy GG Laplacian Levy

S21 0.1014 0.1044 0.1321 0.1234 0.1206
S22 0.1083 0.1097 0.1436 0.1297 0.1229
S23 0.1156 0.1204 0.1432 0.1357 0.1349
S24 0.0880 0.0923 0.1269 0.1224 0.1189
S25 0.1253 0.1275 0.1355 0.1291 0.1215
S26 0.1189 0.1229 0.1347 0.1305 0.1279
S27 0.0798 0.0822 0.1351 0.1403 0.1381
S28 0.0819 0.0835 0.1281 0.1280 0.1253

S11 0.1135 0.1302 0.1347 0.1468 0.1361
S12 0.0875 0.0881 0.0895 0.1030 0.1049
S13 0.0958 0.0959 0.0984 0.1117 0.1012
S14 0.0727 0.0734 0.0759 0.0995 0.0853
S15 0.0917 0.0949 0.0928 0.1073 0.0947
S16 0.0956 0.0957 0.0982 0.1090 0.0979
S17 0.0884 0.0889 0.0885 0.1063 0.0914
S18 0.0900 0.0904 0.0878 0.1098 0.0919
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order to model the contourlet subband coefficients of an image, we
propose the use of SαS distribution to satisfy the large peak and
heavy-tail properties of these coefficients. We investigate as to how
accurately the alpha-stable distribution fits the distribution of the
contourlet coefficients. For this purpose, we examine the histograms
of the actual data as well as that of the SαS, Levy and generalized
Gaussian PDFs for a number of test images. The modeling perfor-
mance of the contourlet coefficients for one of the test images, Bar-
bara image, is illustrated in Fig. 2. It is evident from this figure that
the univariate SαS distribution can fit the empirical data better than
the generalized Gaussian and Levy distributions can. Similar results
have also been obtained for other test images [41]. Moreover, to
quantify the performance of the PDFs, we employ the Kolmogorov–
Smirnov distance (KSD) given by ∫| ( ) − ^ ( ) |P f P f dfmax f f , in which Pf

(f) denotes the PDF of the random variable and ^ ( )P ff represents the
PDF of the empirical data. Table 1 gives the values of the KSD metric
for the SαS, Cauchy, GG, Laplacian and Levy PDFs of the image con-
tourlet coefficients in the two finest scales averaged over the subset
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of 10,000 images taken from the dataset in [50]. It is seen from this
table that the univariate SαS distribution provides a better fit to the
empirical data than the Cauchy, GG, Laplacian and Levy distributions
Fig. 3. Parent–children relationship for a three-scale contourlet decomposition
with eight directions in each scale.

Fig. 4. Distribution of the contourlet coefficients (vertical axis) conditioned on the corres
directional subbands of the Barbara image; a normalized pair of parent and child coeffi
do.
It is known that the contourlet coefficients of images have across-

scale dependencies [39]. Fig. 3 depicts a parent–children relationship
for a three-scale contourlet decomposition with eight directions in
each scale. These dependencies play an important role in the modeling
of the contourlet coefficients. In addition, the contourlet coefficients
are non-Gaussian [10,40], i.e., have large peaks around zero and tails
heavier than that of a Gaussian PDF. In view of this, we also model the
contourlet coefficients of an image using the bivariate alpha-stable
distribution in order to not only capture the heavy tails of the dis-
tribution of the contourlet coefficients, but also to take into account
the contourlet coefficient dependencies across scales. The standard
bivariate SαS is characterized by its characteristic function as

( )( )Φ ω ω γ ω ω( ) = − + ( )α γ
α

, exp 4, 1 2 1
2

2
2

Fig. 4 shows the distribution of the coefficients conditioned on its
parent value in the four directional subbands of the finest scale for one
of the test images, Barbara image. It is seen from this figure that the
ponding coarser-scale coefficient, i.e., parent coefficient (horizontal axis), in the four
cients is considered.
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conditional histograms for various directional subbands resemble a
bow-tie shape indicating the dependency between the children and
their parents. Fig. 5 shows the joint histogram of the contourlet
coefficients across scales for the Barbara image along with the corre-
sponding bivariate SαS PDF. It can be seen from this figure that the
bivariate SαS PDF can suitably model the parent–children relationship
of the contourlet coefficients across two consecutive scales.
4. Proposed denoising algorithm

Let a noise-free image X be contaminated by an independent,
additive white Gaussian noise N with a zero-valued mean and
known standard deviation ση. The corresponding noisy image Y is
then given by

= + ( )Y X N 5

Contourlet transform is now applied to the noisy image. Let Y be
decomposed into = …j J1, , scales and = …d D1, , direction
subbands by the contourlet transform. We then have

η( ) = ( ) + ( ) ( )y m n x m n m n, , , 6j
d

j
d

j
d

where ( )y m n,j
d , ( )x m n,j

d and η ( )m n,j
d denote the (m,n)th con-

tourlet coefficient of the noisy image at scale jwith direction d, the
noise-free coefficient and the corresponding noise component,
respectively. It should be noted that the noise remains Gaussian
after applying the contourlet transform. For notational simplicity,
we drop the subscripts and indices as well, and henceforth use y, x
Fig. 5. (a) Empirical joint child–parent histogram across two scales of the con-
tourlet coefficients in the fourth direction for the Barbara image. (b) The corre-
sponding bivariate SαS distribution.

Fig. 6. Block diagram of the pro
and η throughout the paper.

4.1. Bayesian MAP estimator for Gaussian noise

The Bayesian method imposes a prior model on the contourlet
coefficients that describe their distribution. In this work, we pro-
pose the SαS distribution as a prior for modeling the contourlet
coefficients x corresponding to a specific subband of a noise-free
image. We assume that the probabilistic model associated with the
noisy data y conditioned on x is Gaussian:

μ σ| ∼ ( = ) ( )ηy x N x, 0, 72

The noise distribution can be expressed as ( − )=ηP y x

−
π σ σ

( − )

η η

⎧⎨⎩
⎫⎬⎭exp y x1

2 2

2

2 . For estimating the original image, i.e., the noise-

free coefficients x, given the noisy observation y, we employ the MAP
estimator. Using the Bayes rule, the MAP estimator is defined by
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|

|

x y P x y

P y x P x

P y x P x

arg max

arg max

arg max 8

x y

y x x

x

where Px(x) is the PDF of the contourlet coefficients of the noise-free
image. To obtain the MAP estimate, after inserting η( )ηP into (8), the
derivative of the logarithm of the argument in (8) is set to zero re-
sulting in

σ

^ − + ∂
∂

( − ( ( ))) =
( )η

x y
y

P yln 0
9

x2

We now need a model for the distribution of the contourlet coeffi-
cients Px(x). At this stage, we consider the following three cases.

Case 1: σ( ) ∼ ( )P x N 0,x
2 , where α¼2 and s2 is the variance of the

Gaussian PDF.
Case 2: ( ) = γ

π γ( + )
P xx x2 2 , where α¼1 and γ is the dispersion para-

meter of the Cauchy PDF.

Case 3: ( ) = γ
π

γ−

P xx
e

x
2

x2
3
2

, where α¼0.5 and γ is the dispersion

parameter of the Levy PDF.
Case 4: Best-fit SαS for which there is no closed-form PDF.

It may be noted that Cases 1 to 3 above are the special cases of the
alpha-stable PDF having closed-form expressions [48]. For case 1,
the estimate x̂ for the Gaussian data is obtained from (9) as

σ
σ σ

^ ( ) =
+ ( )η

x y y
10

i
x

x

2

2 2

which is the minimum mean square error (MMSE) solution for the
Bayesian estimator. For Cases 2–4, the Bayesian MAP estimator for
non-Gaussian data is obtained from (9) as

σ^( ) = ( )(| | − | |) ( )η +x y y y Msign 112

where = ∂ ( )
M

P yln y and ( ) = ( )+z zmax , 0 . It may be mentioned that

∂y

posed denoising algorithm.



Table 2
PSNR values obtained using denoising methods employing the alpha-stable family of distributions in wavelet (WT) and contourlet (CT) domains. (Best result shown in bold.)

ση PSNR/ Cauchy SαS-MAP SαS-MMAE Bi-SαS-MAP Bi-SαS-MMAE

WT CT WT CT WT CT WT CT WT CT

Barbara
10/28.13 32.22 32.71 32.60 32.97 32.78 33.62 33.34 34.61 33.70 34.89
15/24.61 30.41 30.66 30.46 31.01 30.77 31.34 31.17 32.86 31.42 33.03
20/22.13 28.42 28.74 28.56 29.21 28.97 29.47 29.22 31.19 29.77 31.65
25/20.17 26.87 26.99 26.31 28.09 27.10 28.53 28.22 30.23 28.76 30.61
30/18.63 24.61 25.16 24.93 26.23 25.39 26.74 26.51 27.84 26.98 28.24
40/16.14 22.64 22.97 22.74 24.03 23.11 24.95 24.83 26.58 25.74 26.97

Peppers
10/28.13 32.13 32.45 32.31 32.65 32.60 33.41 33.02 34.29 33.41 34.59
15/24.61 30.05 30.35 30.21 30.80 30.62 31.13 30.89 32.55 31.06 32.73
20/22.15 28.24 28.33 28.25 29.10 28.76 29.34 29.14 30.51 29.51 30.87
25/20.17 26.56 26.79 26.74 27.92 27.28 28.23 28.01 29.02 28.34 29.22
30/18.63 24.39 25.01 24.97 25.94 25.22 26.19 26.04 27.51 26.56 28.10
40/16.13 22.55 22.67 22.57 23.76 23.19 24.76 24.66 26.35 25.11 26.78

Table 3
PSNR values obtained using the proposed denoising method with different priors for two of the test images, Barbara and Peppers, when σ =η 10.

Image SαS Cauchy GG Laplacian Levy

MAP MMAE MAP MMAE MAP MMAE MAP MMAE MAP MMAE

Barbara 32.97 33.62 32.13 32.71 31.98 32.48 31.51 31.83 31.46 31.75
Peppers 32.65 33.41 32.01 32.45 31.75 32.22 31.21 31.60 31.26 31.64

Bi-SαS Bi-Cauchy Bi-GG Bi-Laplacian Bi-Levy

MAP MMAE MAP MMAE MAP MMAE MAP MMAE MAP MMAE

Barbara 34.61 34.89 33.45 33.96 33.15 33.69 32.74 33.10 33.23 33.64
Peppers 34.29 34.59 33.13 33.61 32.68 33.18 32.24 32.53 32.87 33.29

Table 4
Averaged PSNR values obtained using the proposed denoising method over 60
textured images [51], when σ =η 20.

SαS Cauchy GG Laplacian

MAP MMAE MAP MMAE MAP MMAE MAP MMAE

28.39 29.02 28.04 28.65 28.01 28.58 27.34 28.11

Bi-SαS Bi-Cauchy Bi-GG Bi-Laplacian

MAP MMAE MAP MMAE MAP MMAE MAP MMAE

29.84 30.11 29.35 29.76 29.26 29.69 28.87 29.27
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for Case 2, the Cauchy PDF, =
γ +

M y

y

2
2 2 , while for Case 3, the Levy

PDF, one needs to solve the cubic equation + + + =x ax bx c 03 2 ,
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2
. In the case of the best-fit SαS,

we have to numerically compute the Bayesian MAP estimator

given by (11).
4.2. Bayesian MAP estimator for non-Gaussian noise

We also develop the MAP estimator using zero-mean, in-
dependent and identically distributed non-Gaussian noises mod-
elled by the Maxwell and Rayleigh distributions given by
η
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where = σηv
3
. To obtain the MAP estimate, after inserting the PDFs

of the signal and noise into (8), the derivative of the logarithm of
the argument in (8) is set to zero resulting in
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Since for the case of α¼1, the Cauchy member of the alpha-stable
distribution, the PDF has a closed form expression, the Bayesian
MAP estimator can be derived, after some manipulations, as a root
of the following quartic equation

^ + ^ + ^ + ^ + = ( )x ax bx cx d 0 144 3 2

where for the Maxwell noise = −a y2 , γ= +b y2 2,

γ= − −
σηc y2

y2 2

3

2
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σ γ− ηd y
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2 2
, and for the Rayleigh noise

= −a y2 , γ= + +
σηb y
2

2 2
2

, γ σ= − − ηc y y2 2 2 and γ= +
σ γ− ηd y
2

2 2
2 2

. It
should be noted that for the general case (best-fit α), we obtain the
noise-free coefficients numerically.

4.3. Bayesian MMAE estimator

We now develop a Bayesian MMAE estimator, using the pro-
posed SαS prior, by minimizing the mean absolute error between
the observed data and the estimated one. Since the coefficients in



Table 5
PSNR values obtained using the ML method and the proposed parameter estimation method for various noise levels.

ση

Image Method 10 20 30 40

ML Proposed ML Proposed ML Proposed ML Proposed

Barbara Proposed-MMAE 34.73 34.89 31.49 31.65 28.09 28.24 26.53 26.97
Proposed-MAP 34.53 34.61 31.03 31.19 27.58 27.84 26.21 26.58

Peppers Proposed-MMAE 34.48 34.59 30.63 30.87 27.83 28.10 26.35 26.78
Proposed-MAP 34.21 34.29 30.34 30.51 27.22 27.51 26.10 26.35

Table 6
PSNR values obtained using denoising methods with various windows and image
sizes. (Best result shown in bold.)

Image PSNR

3�3 5�5 7�7 9�9 11�11 15�15 19�19

Lena 256�256 34.61 34.82 34.75 34.64 34.49 34.22 34.01
Lena 512�512 35.76 35.91 36.01 35.98 35.92 35.84 35.70
Lena 1024�1024 36.78 37.04 37.52 37.74 37.85 37.93 37.82

Boat 256�256 32.82 32.89 32.74 32.60 32.47 32.21 32.07
Boat 512�512 33.65 33.87 34.05 33.93 33.81 33.56 33.40
Boat 1024�1024 34.24 35.20 35.62 35.80 35.89 35.96 35.82

Peppers 256�256 33.12 33.17 33.09 32.99 32.85 32.77 32.64
Peppers 512�512 34.32 34.47 34.59 34.51 34.38 34.20 34.07
Peppers1024�1024 35.51 35.64 35.79 35.91 36.05 36.14 36.02

Couple 256�256 33.00 33.06 32.95 32.87 32.73 32.61 32.49
Couple 512�512 33.98 34.05 34.10 34.03 33.96 33.84 33.71
Couple 1024�1024 35.24 35.39 35.51 35.65 35.77 35.87 35.76
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the approximation subband carry most of the information about
the signal to be recovered, we leave them unchanged, and apply
the Bayesian MMAE estimator to the coefficients of the detail
subbands. The Bayesian MMAE estimator of x, given a noisy ob-
servation y, is given by

∫^( ) = ( | ) ( )|x y xP x y dx 15x y

According to the Bayesian rule, ( | )|P x yx y can be written as

∫
( | ) =

( ) ( | )
( ) ( | ) ( )

|
|

|
P x y

P x P y x

P x P y x dx 16
x y

x y x

x y x

where Px(x) is the prior model for the contourlet coefficients of the
noise-free image. Substituting (16) into (15), we obtain
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where η( )ηP is the PDF of the noise. In order to estimate the noise-
free coefficients, we consider the three cases mentioned above,
namely, the Gaussian, Cauchy and the best-fit SαS distributions. It
should be noted that in the case of the general best-fit SαS, the
Bayesian MMAE estimator has to be computed by direct numerical
integration [48,49]. To lower the computational complexity, we
resort to the shrinkage function in terms of a linear convolution as

^( ) =
( ) ( )
( ) ( ) ( )
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η

⁎
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P y xP x
P y P x 18
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where n is the convolution operator. Therefore, instead of
employing direct numerical integration for each coefficient, the
Bayesian MMAE estimates of the coefficients of a subband are
obtained using the cubic spline interpolation method when the
convolution operation is carried out at a limited number of points
using the fast Fourier transform (FFT) algorithm as
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where F and F�1 denote the FFT and inverse FFT transforms, re-
spectively. A consequence of using (19) is reducing the computa-
tional effort in obtaining the MMAE estimates.

4.4. Parameter estimation

In order to employ the SαS prior in denoising, first it is needed
to estimate the parameters α and γ from the noisy coefficients.
There are several estimators, that can be used to estimate the
parameters of the alpha-stable distribution, such as the char-
acteristic function-based estimators including regression-type [52]
and methods based on minimum distance [53], moments [53],
quantiles [48], fractional lower order moments [48,54] and max-
imum likelihood (ML) [55,56]. Among these, the ML estimator [55]
has been shown to provide an efficient estimate of the parameters.
We now propose a method for parameter estimation that uses
spatially-adaptive fractional lower order moments. We have
shown in [40] that when the number of scales is increased, the
distribution of the contourlet coefficients is close to the Gaussian
distribution. In other words, the distribution of the contourlet
coefficients of images is locally Gaussian. In view of this, the dis-
persion parameter γ of an α-stable distribution can be estimated

as γ = σ
2

2
, in which s2 is the variance of the Gaussian distribution in

a small spatial window. In order to estimate s2 in a given scale j,
we employ the spatially-adaptive technique [33] as
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where W is a square-shaped window of size ×l l. The character-
istic exponent α is then estimated using the fractional lower order
moment (FLOM) method. The moments of order less than α for a
SαS random variable [48,57,58] are defined as
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in which α− < < ≤p1 2. It should be noted that the choice of the
order p of the fractional moment is arbitrary. However, as shown
in [59], the best choice is ≈ αp

3
. In order to estimate the standard

deviation of the noise ση from the noisy contourlet coefficients,



Table 7
PSNR values obtained using various denoising methods for three of the test images, Barbara, Boat and Lena. (Best results shown in bold and second best in parentheses.)

Barbara Boat Lena

ση 10 15 20 25 10 15 20 25 10 15 20 25

Visu-shrink (hard) [1] 26.87 26.99 26.31 25.77 28.61 26.90 25.82 25.03 30.65 28.89 27.76 27.02
SURE-shrink [62] 30.21 28.34 27.02 25.84 31.83 29.88 28.55 27.50 33.42 31.50 30.17 29.18
Bayes-shrink [5] 30.86 28.51 27.13 26.01 31.77 29.84 28.45 27.37 33.29 31.38 30.14 29.19
HMT [6] 31.36 29.23 27.80 25.99 32.25 30.28 28.81 27.65 33.81 31.73 30.36 29.21
LAWMAP [67] 32.57 30.19 28.59 27.42 32.22 30.27 28.97 27.88 34.31 32.36 31.01 29.98
Surelet [60] 32.15 29.61 27.93 26.65 32.67 30.55 29.14 28.09 34.56 32.68 31.37 30.36
GNW [75] 32.41 – 27.64 – – – – – 33.96 – 30.62 –

CW- Bi-shrink [33] 33.35 31.31 29.80 28.61 33.10 31.36 30.08 29.06 35.21 33.50 32.28 31.34
LPG-PCA [10] 32.50 – 28.50 – – – – – 33.70 – 29.70 –

Trivariate [65] 33.66 31.49 29.97 28.78 33.23 31.35 30.01 28.98 35.32 33.60 32.36 31.38
TIDFT [66] 33.81 – 30.37 – – – – – 35.70 – 32.98 –

MGGD [61] – – – – 33.31 31.46 30.14 29.12 35.35 33.70 32.46 31.48
CW-CGSM [63] 34.01 31.79 30.25 29.07 33.49 31.51 30.13 29.09 35.50 33.72 32.40 31.35
BLS-GSM [32] 34.03 31.86 30.32 29.13 33.58 31.70 30.38 29.37 35.61 33.90 32.66 31.69
NSCT-LAS [64] 34.09 – 30.60 – – – – – 34.46 – 32.50 –

K-SVD [11] 34.42 32.37 30.83 29.60 33.64 31.73 30.38 29.37 35.61 33.90 32.66 31.69
Fuzzy-shrink [68] 33.99 31.81 30.31 – 33.67 31.75 30.24 – – – – –

WP- shrink [22] 34.15 32.00 30.50 – 33.52 31.70 30.38 – – – – –

NSSTM [69] 33.56 – 30.02 – – – – – 35.87 – 32.93 –

EPLL [74] 33.59 31.33 29.75 – 33.63 31.89 30.63 – 35.56 33.85 32.60 –

MMSE-MAP [70] 32.50 – 28.55 – 32.43 – 28.94 – 34.29 – 31.09 –

NSCCT-NLM [12] 34.49 – 30.99 – 33.71 – 30.52 – 35.98 – 32.96 –

NCSR [18] 34.98 33.02 31.72 – 33.90 32.03 30.74 – 35.81 34.09 32.92 –

PLOW [20] – 32.17 – 30.20 – 31.53 – 29.59 – 33.90 – 31.92
TDNL [17] – – – – – – – – 35.87 34.13 32.86 31.86
CASD [16] 34.38 32.22 30.64 29.33 33.69 31.46 (30.90) 29.69 34.66 32.46 30.94 29.81
R-NL [13] – – 29.76 – – – 29.92 – – – 32.04 –

PID [71] 34.55 – 30.56 – 33.77 – 29.80 – 35.81 – 32.12 –

DDID [72] 34.67 – 30.80 – 33.74 – 29.79 – 35.81 – 32.14 –

NLB [73] 34.82 – 30.24 – 33.91 – 29.67 – 35.78 – 31.80 –

LSSC [15] 34.97 33.00 31.57 30.47 (34.02) 32.20 30.89 29.87 35.83 34.15 32.90 31.87
NHDW [14] 35.01 – (31.79) (30.70) – – – – 35.89 – 32.99 (32.02)
BM3D [19] (34.98) (33.11) 31.78 30.72 33.92 32.14 30.88 (29.91) (35.93) (34.27) 33.05 32.08
SAIST [21] 35.23 33.32 32.10 – 33.91 32.09 30.81 – 35.90 34.21 33.08 –

CT- Bi-SαS-MMAE 34.89 33.02 31.65 30.57 34.05 (32.19) 30.95 29.94 36.01 34.34 (33.06) 32.01

Table 8
MSSIM values obtained using proposed denoising method and some of the other
existing methods for three of the test images, Barbara, Boat and Lena. (Best results
shown in bold and second-best in parentheses.)

ση Bayes-
shrink

HMT LAWMAP CW-
Bi-

Trivariate BLS-GSM BM3D CT-Bi-
SαS-
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Donoho's estimator [7] is modified in the finest decomposition

scale as ( ){ }σ̂ = ∑η = MAD S
D d

D
d

1
0.6745 1 1, , where MAD is the median

absolute deviation and S d1, denotes the dth directional subband
coefficients in the finest scale.

4.5. Proposed denoising algorithm

shrink MMAE

Barbara
10 0.92 0.93 0.93 0.94 0.94 0.95 1.00 (0.96)
20 0.85 0.87 0.87 0.88 0.89 0.91 0.98 (0.94)
30 0.78 0.79 0.81 0.83 0.82 0.84 0.95 (0.91)

Boat
10 0.93 0.94 0.94 0.95 0.96 0.97 1.00 (0.98)
20 0.89 0.90 0.91 0.92 0.92 0.93 0.97 (0.96)
30 0.86 0.85 0.87 0.87 0.89 0.90 0.95 (0.93)

Lena
10 0.93 0.94 0.94 0.96 0.97 0.98 1.00 (0.98)
20 0.87 0.89 0.90 0.89 0.91 0.91 0.97 (0.95)
30 0.81 0.84 0.83 0.85 0.86 0.87 0.94 (0.92)
Step 1: Apply the contourlet transform to the noisy image.
Step 2: Estimate the parameters γ, α and ση from the noisy coef-

ficients using the method mentioned in Section 4(c).
Step 3: Obtain an estimation of the noise-free coefficients by

using the Bayesian MAP (11) or MMAE (17) estimator.
Step 4: Apply the inverse contourlet transform to the estimates

obtained in Step 3.

The above method of denoising an image is also shown in the form
of a block diagram in Fig. 6.
5. Simulation results

The performance of the proposed denoising method is eval-
uated by conducting experiments using set of images obtained
from [50], and then compared to that of the many of the state-of-
the-art techniques. The experiments are performed on images
corrupted with Gaussian noise of standard deviation, ση, varying
from 10 to 40. The noisy images are decomposed by the contourlet
transform into three scales with eight directions in each scale.
Note that any further decomposition beyond these levels does not
produce a significant increase in the denoising performance. We
use the 9–7 bi-orthogonal filters for both the multi-scale and
multi-directional decomposition stages. Since the contourlet
transform is not shift-invariant, the denoised image is affected by
the pseudo-Gibbs phenomena, resulting in artifacts in smooth
regions and ringing effect around the edges. To overcome this
problem, as discussed in Section 2, we employ the cycle spinning
mode by averaging the result of the contourlet shrinkage method



Fig. 8. Top-left: original Barbara image. Top-right: noisy image with σ =η 30. Bottom-left: denoised using BM3D. Bottom-right: denoised using the proposed method.

Fig. 7. Top-left: original Boat image. Top-right: noisy image with σ =η 30. Bottom-left: denoised using BM3D. Bottom-right: denoised using the proposed method.
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Fig. 9. Top-left: original Lena image. Top-right: noisy image with σ =η 30. Bottom-left: denoised using BM3D. Bottom-right: denoised using the proposed method.

Table 9
Averaged PSNR values (in dB) obtained using various denoising methods over 1000
images taken from [50]. (Best results shown in bold.)

Method Standard deviation

10 15 20 25

LAWMAP [67] 33.09 31.37 29.83 28.37
BLS-GSM [32] 34.53 32.78 30.97 29.76
Trivariate [65] 34.11 32.55 30.71 29.45
K-SVD [11] 34.82 33.02 31.36 30.03
BM3D [19] 35.41 33.40 32.01 30.99
CT-Tri-SαS-MMAE 35.63 33.51 32.05 30.90

Table 10
Averaged RMSE values obtained for the MAP and MMAE estimators using the al-
pha-stable family of distributions over a number of test images corrupted by the
Maxwell and Rayleigh noises with σ =η 5. (Best results shown in bold.)

Noise Cauchy SαS Bi-Cauchy Bi-SαS

MAP MMAE MAP MMAE MAP MMAE MAP MMAE

Maxwell 0.0217 0.0195 0.0169 0.0145 0.0164 0.0140 0.0126 0.0102
Rayleigh 0.0189 0.0161 0.0147 0.0118 0.0133 0.0112 0.0105 0.0086
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over all the circulant shifts of the input noisy image. The peak
signal-to-noise ratio (PSNR), in decibels, and the mean structural
similarity (MSSIM) index measure are used to provide quantitative
evaluations of the algorithm. It should be noted that for a parti-
cular noise level, the PSNR value is calculated by repeating the
experiment ten times and then averaging over these values.
Table 2 gives the PSNR values obtained for various estimators
using the alpha-stable family of distributions including the bi-
variate and univariate SαS distributions and its Cauchy member
(α¼1) in the wavelet and contourlet domains for two of the test
images, namely, Barbara and Peppers. From this table, it is seen
that the performance of the denoising algorithm in the contourlet
domain is better than that obtained in the wavelet domain, irre-
spective of the distribution employed. Further, it is observed that
the proposed denoising scheme using the bivariate SαS distribu-
tion provides higher PSNR values than that provided by using the
univariate SαS. Finally, it is noted that the bivariate alpha-stable
distribution in the contourlet domain using the MMAE estimator
(CT-Bi-SαS-MMAE) provides the highest PSNR values for all the
noise levels considered.

We further compare the performance of the SαS prior to that of
the GG, Cauchy, Levy and Laplacian distributions in our proposed
denoising scheme. Table 3 gives the PSNR values obtained using
the proposed method when different priors are used for two of the
test images, namely, Barbara and Peppers. It is seen from this table
that the bivariate alpha-stable (Bi-SαS) distribution provides a
better denoising performance than the other distributions do. Si-
milar results are also obtained for other test images, but are not
included in view of space limitation. Moreover, to investigate the
performance of the proposed denoising scheme on textured ima-
ges, we apply our proposed denoising algorithm to a set of tex-
tured images [51] and the results are given in Table 4. It is seen
from this table that the proposed algorithm performs very well
even for images with high textures. In order to compare the de-
noising performance using the proposed parameter estimation
method discussed in Section 4.4 with that using the ML method,



Fig. 10. (a) Lena image corrupted by the Maxwell noise with σ =η 5, (b) denoised image obtained using BM3D method, RMSE¼0.0945, and (c) denoised image obtained using
the proposed method, RMSE¼0.0883.

Fig. 11. (a) Lena image corrupted by the Rayleigh noise with σ =η 5, (b) denoised image obtained using BM3D method, RMSE¼0.0051, and (c) denoised image obtained using
the proposed method, RMSE¼0.0023.

Table 11
Averaged SNR values obtained using BM3D [19], Bayesian-CTSD [29] and the
proposed denoising schemes over different sets of 512�512 EM images. (Best
results shown in bold.)

Exposure time (s)/num-
ber of images

SNRin SNRout

Bayesian-CTSD
[29]

BM3D [19] CT-Bi-SαS-
MMAE

0.05/20 8.54 19.25 21.32 21.35
0.1/10 15.60 23.46 25.11 25.15
0.2/5 22.74 30.58 31.21 31.32
0.5/2 28.90 33.85 35.47 35.58
1/1 33.11 36.70 37.58 37.72

H. Sadreazami et al. / Signal Processing 128 (2016) 459–473 469
the corresponding PSNR values are obtained and presented in
Table 5 for various noise levels. It is seen from this table that the
proposed method provides higher PSNR values as compared to
that provided by the ML method, irrespective of whether a MAP or
an MMAE estimator is employed.

The effect of window size on images of various sizes in para-
meter estimation is now investigated. Table 6 gives the PSNR va-
lues obtained using the proposed denoising method for a few of
the test images, namely, Lena, Boat, Peppers and Couple. It can be
seen from this table that the window size of the local variance has
an impact on the overall denoising performance. It is observed
that, in general, for images of size 1024�1024, 512�512 and
256�256, windows of size of 15�15, 7�7 and 5�5, respectively,
give the best denoising results in terms of the PSNR values. Similar
results are also observed for other test images.

We now compare the performance of the proposed denoising
method, CT-Bi-SαS-MMAE, to that of a large number of existing
methods, namely, Visu-shrink (hard) [1], Bayes-shrink [5], HMT
[6], LPG-PCA [10], K-SVD [11], NSCCT-NLM [12], R-NL [13], NHDW
[14], LSSC [15], CASD [16], TDNL [17], NCSR [18], BM3D [19], PLOW
[20], SAIST [21], WP-shrink [22], BLS-GSM [32], CW-Bi-shrink [24],
Surelet [60], MGGD [61], SURE-shrink [62], CW-CGSM [63], NSCT-
LAS [64], Trivariate [65], TIDFT [66], LAWMAP [67], Fuzzy-shrink
[68], NSSTM [69], MMSE-MAP [70], PID [71], DDID [72], NLB [73],
EPLL [74] and GNW [75]. Table 7 gives the PSNR values obtained
using these methods and the proposed method for three of the
test images, namely, Barbara, Boat and Lena. It is seen from this
table that the proposed CT-Bi-SαS-MMAE method provides PSNR
values that are generally higher than that provided by the other
methods. Table 8 gives MSSIM [76] values obtained using the
proposed denoising method and some of the other existing
methods for three of the test images, Barbara, Boat and Lena. It is
seen from this table that the values of the MSSIM index obtained
from our proposed method are generally higher than that of the
other methods, except for BM3D in which case our results are
comparable, indicating the effectiveness of the proposed method
in preserving edges and providing better visual quality.

To subjectively evaluate the performance of the proposed de-
noising method, the zoomed-in versions of the three test images
as well as the denoised versions obtained using the proposed CT-



Fig. 12. (a) Noisy TM image with exposure time 0.1 s, and the corresponding denoised images using (b) BM3D and (c) proposed method.

Fig. 13. (a) Cropped noisy TM image with exposure time 0.05 s, and the corresponding denoised images using (b) BM3D and (c) proposed method.

Table 12
PSNR values obtained using various denoising methods for three of the color
images, Lena, Peppers and Baboon. (Best results shown in bold.)

Method Standard deviation

10 15 20 25 30

Lena
Noisy image 28.13 24.61 22.13 20.17 18.60
BLS-GSM [32] 34.45 32.90 31.78 30.89 30.15
Surelet [79] 34.64 33.02 31.90 31.04 30.33
ProbShrink-MB [78] 34.60 33.03 31.92 31.04 29.83
CBM3D [80] 35.22 33.94 33.02 32.27 31.59
CT-Tri-SαS-MMAE 35.25 33.95 33.05 32.21 31.43

Peppers
Noisy image 28.13 24.61 22.15 20.17 18.59
BLS-GSM [32] 33.26 31.89 30.92 29.46 27.47
Surelet [79] 33.35 31.79 30.72 29.89 29.19
ProbShrink-MB [78] 33.44 32.05 31.12 30.35 29.20
CBM3D [80] 33.78 32.60 31.83 31.20 30.61
CT-Tri-SαS-MMAE 33.86 32.64 31.88 31.09 30.42

Baboon
Noisy image 28.13 24.61 22.15 20.17 18.59
BLS-GSM [32] 30.13 27.66 26.08 24.95 24.07
Surelet [79] 30.49 28.15 26.64 25.55 24.71
ProbShrink-MB [78] 30.15 27.72 26.17 25.04 24.16
CBM3D [80] 30.64 28.39 26.97 25.95 25.14
CT-Tri-SαS-MMAE 30.71 28.43 27.00 25.97 25.13

H. Sadreazami et al. / Signal Processing 128 (2016) 459–473470
Bi-SαS-MMAE method and the BM3D method when σ =η 30, are
shown in Figs. 7–9. Although the denoised images obtained using
BM3D may be visually appealing, a closer look at Figs. 7–9 clearly
shows that the denoised images obtained using BM3D are over-
smoothened. This oversmoothing diminishes the sharpness of the
edges and results in a loss of some details; on the other hand, they
are better preserved by the proposed algorithm. This is clearly
noticeable, especially from the edges highlighted by the arrows
and the surrounding areas.

To further compare the performance of the proposed CT-Bi-
SαS-MMAE denoising method to that of the other methods. The
averaged PSNR values over 1000 images taken from [50] obtained
using the proposed denoising scheme and some of the existing
image denoising methods are given in Table 9. It is seen from this
table that the proposed denoising method provides a better per-
formance in terms of higher PSNR values. It is also observed that
the proposed CT-Bi-SαS-MMAE denoising method outperforms
BM3D, K-SVD, BLS-GSM, Trivariate and LAWMAP methods in 77%,
93%, 96.8%, 98.3% and 100% of the images, respectively. Moreover,
to statistically compare the performance of the proposed denois-
ing scheme and that of BM3D, the closest competitor, we compute
the t-value of confidence [77] between the PSNR sample means of
the two methods. The t-value of confidence is found to be 1.962,
which falls within the 0.05 column of the t-table of significance
(95%). In view of this, the improvement in the performance of our



Fig. 14. Color image denoising; (a) cropped noisy Lena image with σ =η 20, PSNR¼22.13 dB as well as the corresponding denoised images obtained using (b) CBM3D,
PSNR¼33.02 dB and (c) the proposed CT-Tri-SαS-MMAE, PSNR¼33.05 dB.

Fig. 15. Color image denoising; (a) cropped noisy Girl image with σ =η 30, PSNR¼18.61 dB as well as the corresponding denoised images obtained using (b) CBM3D,
PSNR¼31.78 dB and (c) the proposed CT-Tri-SαS-MMAE, PSNR¼31.90 dB.

Fig. 16. Color image denoising; (a) cropped noisy Peppers image with σ =η 30, PSNR¼18.59 dB as well as the corresponding denoised images obtained using (b) CBM3D,
PSNR¼30.61 dB and (c) the proposed CT-Tri-SαS-MMAE, PSNR¼30.42 dB.
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method is significant.
To evaluate the performance of the proposed denoising scheme

in the presence of non-Gaussian noises such as Maxwell and
Rayleigh, discussed in Section 4.2, we compute the root mean
squared error (RMSE) between the original and denoised images.
Table 10 gives the averaged RMSE between the original and
denoised images obtained for the proposed MAP and MMAE es-
timators using the alpha-stable family of distributions including
the bivariate and univariate SαS distributions and its Cauchy
member (α¼1) over a number of test images. It is seen from this
table that the CT-Bi-SαS-MMAE gives lower RMSE values indicat-
ing its superiority to other estimators in removing non-Gaussian



Table 13
Averaged PSNR values obtained using various denoising methods over 24 color
images taken from Kodak dataset. (Best results shown in bold.)

Method Standard deviation

10 15 20 25 30

NLM [12] 33.45 31.49 30.06 28.93 28.00
K-SVD [11] 34.16 32.12 30.75 29.72 28.88
CBM3D [80] 34.90 32.88 31.55 30.57 29.81
CT-Tri-SαS-MMAE 35.01 32.95 31.61 30.59 29.80
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noise. Figs. 10 and 11 illustrate the noisy Lena image and the cor-
responding denoised images obtained using the BM3D and pro-
posed CT-Bi-SαS-MMAE denoising methods. It is seen from these
figures that the proposed denoising method is superior to BM3D in
removing non-Gaussian noise from images. The averaged RMSE
over 20 test images obtained using BM3D and the proposed de-
noising methods are 0.0097 and 0.0086, when images are cor-
rupted by the Rayleigh noise, and 0.0123 and 0.0102, when images
are corrupted by the Maxwell noise, respectively. The lower RMSE
values obtained using the proposed denoising scheme reinforce its
superiority over the BM3D method in removing non-Gaussian
noise.

We now investigate the performance of the proposed denoising
method on electron microscopy (EM) images. Table 11 gives the
averaged signal-to-noise ratios, SNRin and SNRout [29], for the
noisy and denoised images, respectively, obtained using the BM3D
[19], Bayesian-CTSD [29] and proposed CT-Bi-SαS-MMAE methods
over the sets of EM images with different exposure times.1 It is
seen from this table that the proposed denoising scheme using the
bivariate SαS PDF in the contourlet domain is superior to BM3D
and the method in [29] in removing noise from the TM images.
Figs. 12 and 13 illustrate the noisy TM images with exposure times
0.1 and 0.05 s, respectively, and their corresponding denoised
images obtained using the BM3D and proposed denoising
schemes. It is seen from these figures that the proposed CT-Bi-SαS-
MMAE method is better than the BM3D method in removing noise
from TM images.

The overall complexity of the proposed CT-Bi-SαS-MMAE de-

noising method is ( )O l N Nlog4
3

2 for an image of size ×N N and a

window of size ×l l. More precisely, for denoising an image of size
256�256, the approximate execution time is 18 s, indicating the
computational efficiency of the proposed algorithm.

5.1. Color image denoising

To denoise color images, we consider standard RGB images
corrupted by additive Gaussian noise in each channel. The most
common approach to denoise color images is to employ the
grayscale denoising method for each of the channels. However, in
order to take into consideration the dependencies of the RGB
channels in color images, we use the trivariate alpha-stable model
in the contourlet domain, CT-Tri-SαS-MMAE. A comparison with
some of the state-of-the-art methods [32,78–80], is given in Ta-
ble 12 for three of the test images, namely, Lena, Peppers and Ba-
boon. It is seen from this table that the proposed color image de-
noising method is better than the other methods in terms of the
PSNR values, except for the CBM3D method for which our results
are comparable. Figs. 14–16 illustrate the cropped noisy Lena, Girl
and Peppers images and their corresponding denoised images
obtained using the proposed CT-Tri-SαS-MMAE and CBM3D
1 The EM image dataset and the corresponding masks were made available by
the authors of [29] to whom we would like to express our thanks.
methods. It can be seen from this figure that the proposed de-
noising method is capable of significantly suppressing the noise,
preserving the details and providing a better visual quality for
denoised images than that provided by CBM3D. To further in-
vestigate the performance of the proposed color image denoising,
we use another group of test images, namely, the Kodak dataset
which consists of 24 color images of size 512�768 [81]. Table 13
gives the averaged PSNR values obtained using the proposed de-
noising method as well as that yielded by other methods over the
Kodak dataset. It is seen from this table that the proposed image
denoising for color images provides higher PSNR values compared
to that yielded by the other methods.
6. Conclusion

In this paper, we have proposed a new image denoising method
in the contourlet domain. The proposed method has been carried out
by modeling the contourlet subband coefficients of images using the
symmetric alpha-stable distribution. The bivariate alpha-stable dis-
tribution has been considered to model the across-scale de-
pendencies of the contourlet coefficients. Bayesian MAP and MMAE
estimators have been developed by using the proposed prior in order
to estimate the noise-free contourlet coefficients. To estimate the
parameters of the alpha-stable distribution, a spatially-adaptive
method based on fractional lower order moments has been proposed
and shown to be superior to the maximum likelihood method. Ex-
tensive experiments have been carried out to compare the perfor-
mance of the proposed denoising method with that provided by the
state-of-the-art methods. The results have shown that the proposed
denoising method generally outperforms other methods in terms of
the PSNR and MSSIM values as well as in terms of the visual quality
of the denoised images. These results have been shown to be equally
true in the case of color images, where a trivariate alpha-stable dis-
tribution has been proposed to capture cross correlations between
the RGB color channels.
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