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ABSTRACT
A new radar-based fall detection method is proposed using 
the recent advances in deep neural networks. An ultra
wideband radar is used to monitor human daily activities and 
identify the occurrence of falls. A transfer learning approach 
is employed based on a pre-trained model on ImageNet 
dataset to realize a robust feature extraction from radar data. 
The architecture and depth of the model are fine-tuned to 
radar time-frequency representations. From the results, it is 
observed that the proposed transfer learning based method 
can achieve a detection accuracy for fall incidents higher 
that those of the other methods.

Index Terms—  Ultra-wideband radar, transfer learning, 
time-frequency analysis, fall detection.

I. INTRODUCTION

Falling down is major health concern for seniors that 
might lead to serious injury or even death. Developing 
efficient and robust technologies for fall detection is of great 
importance. Several fall detection systems have been devel
oped in past years based on different detection approaches 
based on wearable sensors and and video cameras [1], Con
tactless radar-based indoor monitoring is an emerging field 
in recent years [2]-[7], since it is non-invasive and privacy- 
friendly as compared to wearable devices and vision-based 
techniques [1], For instance, in [8] and [9], by incorporating 
micro-Doppler signatures, human activity recognition and 
gait abnormalities have been investigated. In [10], a Doppler 
radar has been used to devise a fall detection method using 
features extracted from wavelet domain. A fall detection 
method has been developed in [11] by extracting a set of 
features from time-frequency representation of the radar 
Doppler signatures. An auto-encoder has been employed 
in [12] to extract features from radar time-frequency rep
resentations. A radar signal recognition has been proposed 
in [14] using extracted features by a restricted Boltzmann 
machine.

In this work, a radar-based fall detection method is pro
posed when feature learning is equipped with learnt features

from a pre-trained model. The motivation behind using a pre
trained model is that there is not adequate labeled training 
data to train a network built from scratch. The proposed 
transfer learning-based approach uses time-frequency repre
sentations, derived from an ultra-wideband radar signals, to 
fine-tune the pre-trained VGG16 network. This network was 
constructed by stacking convolutional blocks and trained on 
ImageNet. To effectively extract features from the radar data, 
all the weights in the VGG networks are frozen except for the 
last convolutional block. The network is then retrained and 
a global average pooling is used to flatten signal at the end 
of the convolutional blocks. This pooling strategy prevents 
the network from overfitting. A softmax classifier is used 
in the output layer to identify the probability of different 
classes. The performance of the proposed transfer-leaming- 
based approach is investigated against that provided by the 
other existing approaches.

The paper is organized as follows. The proposed fall 
detection method is presented in Section II. Results and 
conclusion are given in Sections III and IV, respectively.

II. FALL DETECTION APPROACH
The proposed fall detection approach is comprised of 

preprocessing and feature learning stages, as presented in 
the following.

II-A. Preprocessing
A supervised learning fall detection approach from radar 

return signals is studied. The development kit employed in 
the experiments is Xethru X4M03, operating in the range of 
(5.9 — 10.3) GHz. Fall and non-fall activities are included 
in the dataset collected in a room environment, simulating 
a realistic elderly house. Each 15-second experiment is 
digitized at a rate of 200 samples/second. The resulting 
scattering matrix consists of columns of spatial samples 
from different ranges and rows of observations recorded at 
different time intervals.

After removing clutter, by mean removal, from the radar 
returns, radar time series signal is derived from the scattering 
matrix by averaging over all the columns. A time series x[n)
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Fig. 1. Time-frequency analysis: spectrograms resulted from 
different activities; (a) Falling down, (b) Standing up.

is then obtained. A time-frequency representation is then 
obtained by applying the short-time Fourier transform [15] 
to the radar time series as given by

oo

STFT[n ,k}=  ^  x[r]W[r -  n}exp(- j2irrk/N),  (1)
r = —oo

where W[.] is a Hamming window of size 256 samples, k =  
0 ,1 ,..., N  — 1 is the frequency index and N  is the number 
of frequency points. 80% overlap between adjacent windows 
is considered. The spectrogram is obtained by taking the 
squared magnitude of STFT[n, k] as

S P  = \STFT[n,k}\2(2)

It is noted that the spectrogram S P  represents the energy 
distribution of motion signature at specific time and fre
quency. Fig. 1 shows time-frequency spectrograms of the 
falling down and standing up activities, where the horizontal 
axis is time and vertical axis is frequency. It is seen from 
this figure that the energy content of these activities are 
distinguishable in their time-frequency signatures.

The obtained spectrogram set is denoted by {{SPl: L2)}, 
for (1 < i < N tr), where Ntr is the number of data samples 
and Li is the label for the ith experiment; “fall” or “non
fall”.

II-B. Feature Learning and Classification

Deep learning has shown a great potential for applications 
requiring automatic feature extraction and classification. It 
is known that transfer learning provides a robust model 
with respect to data variability and produces a generalizable 
classifier [16]. In this work, the use of a pre-trained network 
is proposed for fall detection through fine-tuning from a 
large scale dataset to small scale and domain-specific dataset. 
More specifically, the VGG16 [17] network, which has been 
trained on ImageNet [18], is employed. In the following, we 
explain this network.

VGG16 constructs a deeper network structure than the 
well-known AlexNet [19]. VGG16 network is composed 
of convolution modules followed by fully-connected layers. 
This network is constructed by repeatedly stacking a 3 x 3 
convolutional filter and a pooling layer of size 2 x 2. In order 
for a fine-tuning process to be realized, different layers of the 
network are initialized by properly-trained weights. In other 
words, adding randomly initialized fully-connected layers 
on top of the bottleneck features, i.e., the last activation 
maps before the fully-connected layers in the pre-trained 
VGG network, may result in a large update for gradient 
value in each training iteration, and thus, the previously- 
learned weights may be destructed. In view of this, the last 
convolutional block of VGG 16 network is also fine-tuned, 
i.e., weights are updated. It is noted that fine-tuning the entire 
network is not recommended as it may cause overfitting. This 
may be due to the fact that the number of parameters in the 
model is high, and thus, the network stores large amount 
of information, i.e., large entropic capacity. In general, the 
low-level convolutional blocks learn less abstract features 
than those in the higher levels. In view of this, the first 
four convolutional blocks are kept fixed and only the last 
convolutional block is fine-tuned. Fig. 2 shows the block 
diagram of the proposed fall detection method using transfer 
learning.

III. RESULTS

In this section, the results of the proposed fall detection 
method is presented. 206 radar return samples were collected 
in a cluttered room from five different subjects including 121 
fall and 85 non-fall activities. The activities are as follows: 
(1) the subject walks in front of the radar line of sight 
and falls down at different distances to the radar, (2) the 
subject stands still and falls down at different distances to 
the radar, (3) the subject stands and falls down with with 90 
degree angle to the radar, (4) the subject lies down with or 
without side rolling or other movements, and (5) the subject 
stands up from lying down position in front of the radar and 
with 90 degree angle to the radar. A time series is derived 
by averaging over all columns of the radar back-scattered 
matrix. Radar time series is used to derive the radar time- 
frequency image, i.e., spectrogram. The spectrograms are
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Fig. 2. Block diagram of the proposed radar-based fall detection method using transfer learning.

then employed to retrain the last convolutional block and 
top layer classifier of the VGG16 pre-trained network.

Table I gives classification accuracies obtained using the 
VGG16, when the model is fine-tuned for the top-level 
layers with or without a convolutional layer, i.e., the last 
two convolutional layers in convolutional block 5, shown 
in Fig. 2. It is seen from this table that fine-tuning the 
model with one or two convolutional layers is better than 
only fine-tuning the top-level layers like max-pooling (MP) 
and global spatial average-pooling (GAP) layers. This can be 
attributed to the fact that the radar data, i.e., spectrograms, is 
different from ImageNet dataset used to train VGG16, and 
thus, transferring the weights of lower layers of the network 
to extract low-level features results in a better classification 
accuracy than directly classifying the data based on the entire 
trained networks. It should also be noted that fine-tuning 
with more number of convolutional layers may result in over
fitting.

It should be noted that a GAP is added to the last 
convolutional block to flatten the feature map and to avoid 
overfitting. The use of a GAP was proposed in [20] as a 
replacement for the fully-connected layers to preclude the 
need for a separate flatten layer and produce better results. 
The learning rate for fine-tuning is set to 0.001, since the 
magnitude of the updates should be kept small to preserve 
the previously-learned features. The batch size is 16. In the 
output layer, the softmax activation is used. The loss function 
employed is the categorical cross-entropy. The network 
is retrained by minimizing the error using the stochastic 
gradient decent optimizer via backpropagation. Fig. 3 shows 
the features of the pre-trained VGG16 network extracted 
from training set before and after fine-tuning. T-distributed

Table I. Accuracy, precision and sensitivity values (%) 
obtained using the proposed transfer learning-based method, 
when fine-tuning the VGG16 model with or without convo
lutional layers in a 3-fold cross-validation sense.

Metrics

Method Accuracy Precision Sensitivity

2 Conv+MP+GAP+Output 95.64 96.12 96.73

1 Conv+MP+GAP+Output 95.64 96.12 96.73

MP+GAP+Output 89.80 90.72 92.37

GAP+Output 89.32 90.89 91.66

stochastic neighbor embedding [21] is used for visualization 
purpose. It is seen from this figure that fine-tuning has 
considerable impact on feature learning as it adjusts the 
upper layers of a pre-trained network very precisely to fit 
with new dataset under study, i.e., spectrograms.

In order to investigate the performance of the proposed 
transfer learning-based method, other methods based on K- 
nearest neighbors (KNN), Gaussian support vector machine 
(GSVM) and linear support vector machine (LSVM) were 
also implemented. To this end, the radar time series obtained 
from the radar back-scattered matrix is used as input for 
these classifiers. Different K  values were tested to optimize 
the performance of a KNN-based classifier. It is found 
experimentally that K  — 5 results in higher classification 
metrics. Table II gives classification accuracy, precision and 
sensitivity of various methods in a 3-fold cross validation. It 
can be seen from this table that the transfer learning-based
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Fig. 3. Visualization of feature clusters extracted from the pre-trained VGG16 network for training set, (a) before and (b) 
after fine-tuning.

Table II. Accuracy, precision and sensitivity values (%) 
obtained using the proposed transfer learning based method 
and those provided by LSVM, GSVM and KNN in a 3-fold 
cross-validation.

Metrics

Method Accuracy Precision Sensitivity

LSVM 80.01 82.64 83.34

GSVM 79.13 85.12 80.46

KNN 78.64 82.64 81.30

Proposed 95.64 96.12 96.73

method is superior to other methods as evidenced by its 
higher classification metrics.

IV. CONCLUSION
A new fall detection method has been proposed. The 

proposed method has been developed by using the signals 
received from an ultra-wideband radar sensor. Instead of 
building a learning model from scratch, we have adapted an 
existing model to prevent the need for data augmentation. 
In particular, time-frequency representations from the radar 
time series have been derived and used to fine-tune the 
last convolutional block of the pre-trained VGG16 network. 
Since the radar dataset is small and different from the 
base training dataset, the network weights up to the last 
convolutional block have been kept unchanged and the rest

are used for retraining with the spectrograms of the radar 
returns of human activities. Experimental results have shown 
that the proposed method is superior to other methods in 
discriminating falls from non-fall activities. In addition, it 
has been observed that a transfer learning approach can be 
promising for feature extraction from the radar returns and 
classifying them, even when the dataset is small. Future 
direction of our research is toward the use of a pre-trained 
network directly applied to the radar time series.
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