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Abstract—Salient object detection is an active research topic
due to several potential applications in image compression, scene
understanding, image retrieval, and so forth. In this paper, a
salient object detection method is proposed by leveraging the
recent advances in graph signal processing. Since, the image
boundary regions generally belong to the image background,
a distribution-based boundary contrast map is generated. Also,
the graph representation of the image is used to compute the
connectivity of the image regions to the image boundary as
well as those to their local neighbors and the image foreground.
The connectivity maps obtained are fused with the boundary
contrast map in order to obtain the image saliency map. Several
experiments are conducted to evaluate the performance of the
proposed salient object detection method and to compare it with
the state-of-the-arts. Results on datasets of images demonstrate
that the proposed method achieves superior performance to the
state-of-the-art methods in terms of precision, recall, and mean
absolute error values.

Index Terms—Salient object detection, graph signal processing,
boundary connectivity.

I. INTRODUCTION

Salient object is part of an image that captures the human
visual system’s (HVS) attention due to its high contrast with
respect to other regions in the image. The main goal of
a saliency detection method is obtaining a saliency map,
in which the salient object is highlighted, while the back-
ground region is suppressed. With several applications, such
as object of interest image segmentation [1], adaptive image
compression [2], object-based image retrieval [3], content-
aware image resizing [4]-[5], and medical imaging [6], salient
object detection has attracted a great deal of interest in image
processing and computer vision research communities, and
several salient object detection methods have been proposed
[7]–[11].

The key point in salient object detection for an image is
to compare its different regions using appropriate measures in
order to discriminate the salient region from the non-salient
ones.

Recent advances in graph signal processing has provided
an opportunity to revisit traditional image processing solutions
by providing a new framework for representing the relations
among different pixels or regions of an image [12]–[14]. In a
graph-based framework, the image samples are represented on
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a weighted graph. Such a weighted graph can be utilized to
capture the similarities between image pixels or image regions.
In view of this, some graph-based salient object detection
methods have been proposed [15]–[19]. In these methods,
the image boundary connectivity cue has been shown to be
effective in detecting the salient object. Considering the image
boundary connectivity, these methods assume that the image
boundary regions mostly belong to the image background.
Therefore, the regions that are closer and more similar to the
image boundary are most likely non-salient. In other words,
the non-salient regions provide a larger boundary connectivity
value in comparison to the salient region.

In the methods which are based on the boundary connectiv-
ity cue, each region is only compared to the image boundary.
Therefore, the saliency value of each region is evaluated in
a global manner. However, evaluating the similarity of each
region to its local neighborhood is also required. The local
saliency value has been overlooked in most of the existing
graph-based schemes. In addition, the boundary connectivity
cue fails in images in which the salient object touches the
image boundary. In view of this, in this paper, by leveraging
the new framework of graph signal processing, we address the
salient object detection problem by considering the distance
of each region to the image boundary, its local neighborhood
and the image foreground. Moreover, in order to further
improve the performance specially in images with salient
objects located around the image boundary, a distribution-
based boundary contrast value is calculated for all the image
regions including the ones located at the image boundary. The
background and foreground cues obtained are then integrated
in a graph-based optimization framework. Several experiments
are conducted to evaluate the performance of the proposed
graph-based salient object detection method.

II. PROPOSED SALIENT OBJECT DETECTION METHOD
USING FOREGROUND AND BACKGROUND CUES

In this section, the proposed graph-based salient object
detection method is presented. In the proposed method, the
saliency value of each region, is determined based on its
connectivity to the image background as well as that to
the image foreground, where the regions around the image
boundary are assumed to belong to the image background.
Boundary contrast of each region is first measured using a
distribution-based algorithm. Then, a graph-based strategy is
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Fig. 1: (a) A sample image. (b) Ground truth. (c) The
rough foreground region. (d) The distribution-based boundary
contrast map. (e) The graph-based background connectivity
map. (f) The graph-based foreground connectivity map. (g)
Optimized fused map. (h) The map obtained after combining
the optimized fused map and the boundary contrast map. (i)
The final saliency map.

employed to evaluate the connectivity of each region to the
image foreground and background. Fig. 1 shows a sample
image, its corresponding ground truth and output of different
steps of the proposed method.

In the proposed method, the input image is first converted to
the commonly-used CIELAB color space, having luminance,
red/green, and blue/yellow channels, denoted by L, a, and b,
respectively. In the saliency detection problem, the main goal
is detecting the most distinctive region of the image rather
than the individual pixels. In view of this, the input image
is segmented into n nearly regular regions called super-pixels
using the SLIC algorithm [20].

A. Graph Construction

In the proposed method, an undirected weighted graph
G = (V,E,K) is constructed consisting of a finite set V of
vertices (image super-pixels) and a finite set E of edges with
the corresponding weights kpq ∈ K, which denote similarity
between vertices (super-pixels) p and q in the graph. The
similarity weights are represented as K = [kpq], where kpq is
defined by the standard Gaussian kernel as

kpq = 1− exp

(
−

[
d2pq
2σ2

])
, (1)

where d2pq = (xp − xq)2 and σ controls the level of similarity
achieved by (1), xp and xq denote the mean Lab color vectors
of super-pixels p and q, respectively. Since in the proposed
method length of the shortest path between the nodes are
measured, the weights in (1) are defined such that a larger
weight is equivalent to being more different. Moreover, in
order to increase the connectivity value of the boundary super-
pixels, they are all linked together by adding edges in the
graph.

Having the graph similarity matrix K, the corresponding
graph Laplacian matrix is defined as L = D − K, where
D = diag

{∑
q k(1, q), ...,

∑
q k(n, q)

}
. The graph Laplacian

matrix plays an important role in describing the underlying
structure of the graph signal.

B. Distribution-based Boundary Contrast Map
Distribution-based boundary contrast map is constructed to

detect the regions that are different from the image boundary.
To this end, the pixels located in four strips, each s pixels
wide, around the four image boundaries are assumed to be
the boundary region. Considering the distribution of pixels in
such a non-salient boundary region, the Mahalanobis distance
between each super-pixel and the boundary region distribution
is computed. The mean Lab color vector, x̄bnd, and the color
covariance matrix, Cbnd, of the boundary region, and also the
mean color vector of the pixels inside each super-pixel, x̄p,
are computed. The distribution-based boundary contrast value
BCdist, of each super-pixel is then obtained as

BCdist (p) =

√
(x̄p − x̄bnd)C−1

bnd (x̄p − x̄bnd)
T
. (2)

These values are then normalized by scaling between 0 and 1.
In the contrast map obtained, super-pixels with a value

larger than a threshold thBCdist
are roughly selected as the

image foreground. This rough foreground region, FGregion,
is further used in the following graph-based saliency compu-
tation. Fig. 1(c) and (d) show the rough foreground region and
the boundary contrast map for the sample image in Fig. 1(a).

It should be noted that the boundary contrast value is
computed for all the super-pixels including the ones located at
the image boundary. This makes the proposed algorithm robust
especially in images in which the salient region touches the
image boundary.

C. Graph-based Foreground and Background Connectivity
Maps

Using a graph representation of the image discussed in
Section II. A, two maps, namely, foreground and background
connectivity maps, are generated in order to evaluate the
similarity of each super-pixel to the image foreground and
background regions.

The shortest path between the two super-pixels p and q in
the graph, is calculated as the accumulated edge weights along
the shortest path between them, as given by

d (p, q) = min
p1=p,p2,...,pn=q

n−1∑
i=1

kpipi+1 . (3)
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Fig. 2: A synthetic image representing a sample super-pixel,
the boundary super-pixels, the 2 layers adjacent super-pixels,
and the rough foreground super-pixels.

In order to obtain the background map, super-pixels located
around the image boundary are regarded as the background
region as shown in Fig. 2. The value of a super-pixel p in the
graph-based background connectivity map Bmap, is computed
based on the shortest path length from p to all the boundary
super-pixels as

Bmap (p) = −

{
N∑
i=1

d (p, pi) |pi ∈ Boundary

}
, (4)

where N is number of the image boundary super-pixels. The
background map obtained is scaled between 0 and 1. Fig. 1(e)
shows the graph-based background connectivity map for the
sample image in Fig. 1(a).

The value of a super-pixel p in the graph-based foreground
map Fmap, is obtained using the shortest path length from p
to the super-pixels of the rough foreground region FGregion,
obtained in Section II.B, and also to its local super-pixels
Localregion (shown in Fig. 2), as given by

Fmap (p) = −

{∑
i

d (p, pi) |pi ∈ FGregion

}

+

{∑
i

d (p, pi) |pi ∈ Localregion

}
, (5)

where the local region Localregion of each super-pixel consists
of its adjacent super-pixels in two layers and also its κ-nearest
neighbors set of super-pixels. The foreground map obtained is
then normalized to [0, 1] range. The foreground connectivity
map for the sample image in Fig. 1(a), is shown in Fig. 1(f).

D. Fusion of Foreground and Background Cues

The foreground and background connectivity maps are
combined by considering three following constraints in an

optimization framework [16] The super-pixels having large
values in the foreground map are most probably salient. 2)
The super-pixels having large values in the background map
are most probably non-salient. 3) The super-pixels that are
adjacent and also similar in appearance should have the same
saliency values. Accordingly, the cost function is defined as

n∑
i=1

F imap

(
X̂i − 1

)2
+

n∑
i=1

Bimap

(
X̂i

)2
+ X̂TLX̂ (6)

where X̂i is the optimized value of the super-pixel i in the
fused map and X̂TLx̂ denotes the graph Laplacian regularizer
or smoothness term between adjacent super-pixels.

The optimized fused map is computed by solving Eq. (6)
in a least-square error sense, as given by

X̂ = Fmap (Fmap + Bmap + L)
−1 (7)

Fig. 1(g) shows the optimized fused map obtained by
applying Eq. (7).

In order to leverage the boundary contrast cue, the
distribution-based boundary contrast map, BCdist, is then
added to the optimized fused map thus obtained, X̂, i.e.,
S = (1/entropy(X̂)) ∗ X̂ + (1/entropy (BCdist)) ∗ BCdist ,
where the entropy-based weights are used to assign a larger
weight to the map with smaller number of gray levels [10].
Fig. 1(h) shows the map obtained by the weighted sum of
the boundary contrast map, Fig. 1(d), and the optimized fused
map, Fig. 1(g).

E. Post-processing

In order to smooth the saliency map S, while retaining
the details of the boundaries between salient and non-salient
regions, a bilateral filtering is applied to the fused map [21].
Also, accounting for the center-bias criterion, the map obtained
is pixel-wise multiplied with a parameter free centeredness
map [18]. Finally, to increase the contrast between salient and
non-salient regions, the contrast is further enhanced by apply-
ing a sigmoid function, defined as f(x) = 1

1+exp(−α(x−0.5)) ,
to the saliency map, where α is a parameter to control the
contrast level. The final saliency map after applying the post-
processing step for the sample image in Fig 1(a), is shown in
Fig. 1(i).

III. EXPERIMENTAL RESULTS

Several experiments are conducted on images of two chal-
lenging and widely used datasets, DUT-OMRON [17] (con-
taining 5168 images) and HKU-IS [22] (containing 4447
images). Performance of the proposed salient object detection
method is evaluated and compared to those of the other
existing methods. In the experiments, number of super-pixels
in each image n is 600. Also, σ in Eq. (1) is set to 0.5. The
width of the boundary strips s is set to 0.1 × (min(H,W ))
where H and W are the two dimensions of the image. The
threshold to find the rough foreground region thBCdist

is 0.7.
To find the LocalRegion of each node, κ is found adaptively
by considering all the nodes connected to the target node with

3



Fig. 3: Saliency maps obtained by applying different methods
on a test image from DUT-OMRON dataset. (a) Original
image. (b) Ground truth. (c) SF [24]. (d) MR [17]. (e) SO
[16]. (f) RC [23]. (g) MBD+ [18]. (h) MST [19]. (i) Proposed
method.

an edge value smaller than 0.1 × (mean (all the edges)). In
the post processing step we set α = 10.

Performance of the proposed method is compared with that
of a number of related and state-of-the-art methods, namely,
MST [19], MBD+ [18], RC [23], SO [16], MR [17], and SF
[24]. The saliency maps obtained using the proposed method
as well as that of the other methods for a test images is shown
in Fig. 3. It is seen from this figure that the salient object is
detected more accurately by applying the proposed method as
compared to the other methods.

In order to objectively compare the gray level saliency maps
with the binary ground truth, the saliency maps are converted
to binary maps using fixed and adaptive threshold values [10],
[25]. Figs. 4 (a)-(b) illustrate averaged precision-recall curves
obtained by using various methods over the images in the two
datasets. It can be seen from these figures that for the images
in the two datasets, the proposed method provides larger
precision values for a wide range of recall values as compared
to the other methods. The Fβ [25] and mean absolute error
(MAE) values obtained using the proposed method as well
as that of the other existing methods are given in Table 1.
It is seen from this table that the proposed salient object
detection method is superior to the other existing methods,
as indicated by the larger Fβ when applied to the images in
the two datasets. Also, the proposed method provides smaller
values of MAE as compared to the other methods for images
in the both datasets.

IV. CONCLUSIONS

In this paper, a salient object detection method has been
proposed by using the foreground and background connectivity
cues in a graph-based framework. To this end, each super-
pixel’s distance the boundary superpixels and its local region
have been computed using the image graph representation.
The two connectivity maps have been fused in an optimiza-
tion framework and the result has been combined with a

(a)

(b)

Fig. 4: Precision-recall curves obtained by applying the pro-
posed saliency detection method and the other methods for
images (a) DUT-OMRON and (b) HKU-IS datasets.

TABLE I: Fβ and MAE values obtained by applying the
proposed method and the other methods on images in the two
datasets.

Dataset DUT-OMRON HKU-IS
Method Fβ MAE Fβ MAE
Proposed 0.6064 0.1202 0.7306 0.1151
MST 0.5754 0.1434 0.7117 0.1216
MBD+ 0.5575 0.1448 0.6957 0.1235
RC 0.5400 0.1462 0.6933 0.1233
SO 0.5619 0.1345 0.7046 0.1168
MR 0.5670 0.1314 0.4733 0.1537
SF 0.4733 0.1537 0.5697 0.1618

distribution-based boundary contrast map. Experimental re-
sults have shown that the proposed method outperforms the
other methods in terms of precision, recall, F-measure and
mean absolute error values. The improved performance of the
proposed method is attributed to utilizing the effective graph-
based representation, the boundary connectivity cues, and local
connectivity computation.

4



REFERENCES

[1] B. Ko and J.-Y. Nam, “Object-of-interest image segmentation based on
human attention and semantic region clustering,” Journal of the Optical
Society of America A, 2006, vol. 23, no. 10, pp. 2462-2470.

[2] L. Itti, “Automatic foveation for video compression using a neurobiolog-
ical model of visual attention,” IEEE Transactions on Image Processing,
2004, vol. 13, no. 10, pp. 1304-1318.

[3] Y.-F. Ma and H.-J. Zhang, “Contrast-based image attention analysis by
using fuzzy growing,” Proc. ACM International Conference on Multime-
dia, 2003, pp. 374-381.

[4] S. Avidan and A. Shamir, “Seam carving for content-aware image
resizing,” ACM Transactions on graphics (TOG), 2007, vol. 26, no. 3.

[5] G. Zhang, M. Cheng, Sh. Hu and R. Martin, “A shape-preserving
approach to image resizing,” Computer Graphics Forum, 2009, vol. 28,
no. 7.

[6] Y. Yuan, J. Wang, B. Li and M.-H Meng, “Saliency based ulcer detection
for wireless capsule endoscopy diagnosis,” IEEE Transactions on Medical
Imaging, 2015, vol. 34, no. 10, pp. 2046-2057.

[7] M. Rezaie Abkenar and M. O. Ahmad, “Quaternion-based salient region
detection using scale space analysis,” in Proc. Signal Processing and
Intelligent Systems Conference (SPIS), pp. 78-82, 2015.

[8] M. Rezaie Abkenar and M. O. Ahmad, “Superpixel-based salient region
detection using the wavelet transform,” in Proc. IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 2719-2722, 2016.

[9] M. Rezaie Abkenar, H. Sadreazami, and M. O. Ahmad, “Patch-based
salient region detection using statistical modeling in the non-subsampled
contourlet domain,” in Proc. IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1-4, 2017.

[10] M. Rezaie Abkenar and M. O. Ahmad, “Salient region detection using
efficient wavelet-based textural feature maps,” Multimedia Tools and
Applications, vol. 77, no. 13, pp. 16291-16317, 2018.

[11] M. Rezaie Abkenar, H. Sadreazami, and M. O. Ahmad, “Salient re-
gion detection using feature extraction in the non-subsampled contourlet
domain,” IET Image Processing,, 2018.

[12] H. Sadreazami, A. Mohammadi, A. Asif and K. N. Plataniotis, “Dis-
tributed graph-based statistical approach for intrusion detection in cyber-
physical systems,” IEEE Transactions on Signals and Information Pro-
cessing over Networks, vol. 4, no. 1, pp. 137-147, 2018.

[13] H. Sadreazami, A. Asif and A. Mohammadi, “Iterative graph-based
filtering for image abstraction and stylization,” IEEE Transactions on
Circuits & Systems II: Express Briefs, vol. 65, no. 2, pp. 251-255, 2018.

[14] H. Sadreazami, A. Asif and A. Mohamamdi, “Data-adaptive color image
denoising and enhancement using graph-based filtering,” in Proc. IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1-4, 2017.

[15] Y. Wei, F. Wen, W. Zhu, and J. Sun, “Geodesic saliency using
background priors,” in Proc. European Conference on Computer Vision
(ECCV), pp. 29-42, 2012.

[16] W. Zhu, S. Liang, Y. Wei, and J. Sun, “Saliency optimization from
robust background detection,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2814-2821, 2014.

[17] C. Yang, L. Zhang, H. Lu, X. Ruan, and M. Yang, “Saliency detec-
tion via graph-based manifold ranking,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3166-3173, 2013.

[18] J. Zhang, et. al. “Minimum barrier salient object detection at 80 fps,”
Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015, pp. 1404-1412.

[19] W. C. Tu, S. He, Q. Yang and S. Y. Chien, “Real-time salient object
detection with a minimum spanning tree,” in Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2334-2342.

[20] R. Achanta, et al. “SLIC superpixels compared to state-of-the-art su-
perpixel methods,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 11, pp. 2274-2282, 2012.

[21] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp 839-846, 1998.

[22] G. Li and Y. Yu, “Visual saliency based on multiscale deep features,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 5455-5463.

[23] M. M. Cheng, N. J. Mitra, X. Huang, P. H. Torr and S. M. Hu “Global
contrast based salient region detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2015, vol. 37, no. 3, pp. 569-582.

[24] F. Perazzi, P. Krahenbuhl, Y. Pritch and A. Hornung, “Saliency filters:
Contrast based filtering for salient region detection,” in Proc. IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
733-740, 2012.

[25] R. Achanta, S. S. Hemami, F. J. Estrada and S. Susstrunk, “Frequency
tuned salient region detection,” Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009, pp. 1597-1604.

5


