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Abstract—Automatic fall detection using radar aids in better
assisted living and smarter health care. In this brief, a novel time
series-based method for detecting fall incidents in human daily
activities is proposed. A time series in the slow-time is obtained by
summing all the range bins corresponding to fast-time of the ultra
wideband radar return signals. This time series is used as input to
the proposed deep convolutional neural network for automatic
feature extraction. In contrast to other existing methods, the
proposed fall detection method relies on multi-level feature learn-
ing directly from the radar time series signals. In particular, the
proposed method utilizes a deep convolutional neural network for
automating feature extraction as well as global maximum pooling
technique for enhancing model discriminability. The performance
of the proposed method is compared with that of the state-of-
the-art, such as recurrent neural network, multi-layer perceptron,
and dynamic time warping techniques. The results demonstrate
that the proposed fall detection method outperforms the other
methods in terms of higher accuracy, precision, sensitivity, and
specificity values.

Index Terms—Biomedical signal processing, smart homes, fall
detection, convolutional neural network, ultra-wideband radar.

I. INTRODUCTION

FALLING down is considered one of the leading causes
of accidental deaths and one of the major causes of

injury for seniors [1]. In view of this, developing technolo-
gies for fall detection and prevention systems is of the utmost
importance in elder care systems. So far, the current fall detec-
tion methods are mostly based on wearable devices, video
cameras and smart-phone sensors [2]. On the other hand,
non-contact indoor monitoring using radar has become more
popular in recent years [4], since it avoids privacy issue of
the video-based techniques and preclude the need for wearing
a device [3]. For instance, human activity and posture clas-
sification were studied in [5] using a radar sensor. In [6], a
human activity recognition method was developed based on
radar micro-Doppler data by extracting features from time-
velocity and cadence-velocity domains. In [7], in order to
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detect gait abnormalities and transitional motions, the key
Doppler features associated with gait motions were extracted.
A wavelet-based approach was devised in [8] for fall detection
purpose using Doppler radar. In [9], a fall detection scheme
was presented by exploiting time-frequency characteristics of
radar Doppler signatures, where events were classified by a
sparse Bayesian classifier using statistics of different features.

Most of the existing radar-based fall detection methods
are based on extracting a set of features from the radar
data and developing a model to differentiate between the fall
and non-fall daily activities. These features were extracted
in time domain such as low and/or high order moments, in
frequency domain such as cepstrum coefficients [10], peak
frequency [11], and in time-frequency domain such as spec-
trogram [12]. However, these extracted features are limited
in type, requiring expert knowledge to manually engineer.
To overcome this problem, few attempts have so far been
made to design an automated feature extraction method from
radar data. In [13], a radar signal recognition was proposed
using a deep restricted Boltzmann machine. In [14], a deep
neural network approach was presented to reduce dimension-
ality of the extracted features from radar signals based on
stack auto-encoder. A gait-based human identification was
presented in [15] using an acoustic sensor and deep neural
network. In [16], a generative model based on PixelCNN was
presented to synthesize speech time series signals. Dilated
causal convolution was employed to deal with the long-
range temporal dependencies required. In [17], a sequence
to sequence modeling method was proposed based only on
convolutional neural network. This model was equipped with
gated linear units and residual connections. It was shown that
hierarchical convolutional structure may provide a more effi-
cient way to capture long-range dependencies of the time
series compared to the chain structure modeled by recurrent
networks. However, automatic feature extraction directly from
the radar time series used for various classification problems
including fall detection has not been proposed in the literature.

In view of this, to extract features automatically from radar
data and avoid manual feature extraction and engineering, in
this brief, a fall detection method is proposed by incorporating
time series derived from ultra wideband radar (UWB) returns
and a deep neural network. The proposed method is realized
by adopting deep convolutional neural network for extracting
multi-level features from radar time series data. In particu-
lar, signals reflected from the target are summed up over all
the range bins in fast-time and the resulting time series in

1549-7747 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2624-0681
https://orcid.org/0000-0002-8013-8645


198 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 67, NO. 1, JANUARY 2020

Fig. 1. Block diagram of the proposed radar-based fall detection method. A radar time series is obtained from the radar scattering matrix. A deep convolutional
neural network is used for feature extraction and classification.

slow-time is fed into the deep convolutional neural network.
The proposed network consists of convolutional layers and a
global maximum pooling to enhance model discriminability.
The following are the distinguishing contributions of this brief:

a) Unlike other published research works, this brief proposes
the use of a time series derived from the radar scattering matrix
as the input to the deep neural network for fall detection.

b) Unlike the other existing works that rely on heavy pre-
processing and hand engineered feature extraction from time,
frequency and time-frequency domains, the proposed method
automatically derives the features from the time series input
using deep convolutional neural networks.

II. EXPERIMENTAL SETUP AND MEASUREMENT

In our experiments, Xethru X4M03 development kit is used
for data collection. UWB radar operates in 5.9 − 10.3 GHz,
providing high spatial resolution, unobtrusiveness and privacy-
preserving monitoring. In particular, UWB radar works on the
basic principle of sending short pulses at high frequencies,
resulting in a high range resolution. The radar is placed 1.5 m
above the floor level. The room is cluttered which is mostly
static and is filtered out by removing mean from the radar scat-
tering matrix before further processing. Each scan is repeated
for 15 seconds and digitized at a rate of 200 samples/second.
The data in each scan is summed up and it forms a time series
over scans. The range of the radar used in this brief is set to
10 m. Thus, with 5.35 cm range resolution of the radar, each
scan is divided into 189 bins.

The dataset includes different types of fall and non-fall
activities, performed by five healthy male subjects aging from
20 to 25, namely, walking toward radar and falling down,
standing in front of radar and falling down, standing and
falling down perpendicular to the radar line of sight, lying
down and standing up in front of the radar, and lying down
and standing up perpendicular to the radar line of sight. The
number of different fall and non-fall experiments performed
are 121 and 85, respectively.

III. PROPOSED FALL DETECTION METHOD

In this section, the proposed fall detection method based
on automatic feature extraction and classification using deep
convolutional neural network is presented. Fig. 1 depicts block
diagram of the proposed fall detection method.

A. Preprocessing

The radar return signals are recorded into a matrix X =
xi,j ∈ R

m×n, where n columns represent the spatial samples
from different ranges (fast-time, a scan), while m rows cor-
respond to observations recorded at different time intervals

TABLE I
CONFIGURATION OF THE PROPOSED DEEP NEURAL NETWORKS

(slow-time, across scans). The range of the radar used in this
brief is set to 10 m. In order to prepare the input time series
for the proposed deep convolutional neural network, the radar
fast-time data are integrated to obtain a normalized time series
with slow time samples as

xi =
∑

j

xi,j

max︸︷︷︸
j

(|xi,j|) . (1)

B. Deep Convolutional Neural Network

In most of the existing works on fall detection [8], [9], [11],
a set of features from the radar data either in time or frequency
domain are extracted and used as inputs for classification to
detect fall incidents. The results in these works have shown
that any improvement in the accuracy of the fall detection
system depends on the features extracted. With the advent of
deep neural networks, manual engineering of features can be
avoided. In the proposed fall detection method, convolutional
neural network is applied to the radar time series data, obtained
in Section III-A, for automatic feature learning and classifica-
tion tasks. The convolutional network is selected since it can
capture dependency between a time instance and its neighbor-
ing instances in receptive field of the convolutional filters. In
addition, their local connectivity and shared weights properties
result in reducing the total number of trainable parameters and
efficient training. The schematic of the proposed deep neural
network is shown in Fig. 2. Table I gives details of config-
uration of the network; filter sizes and output shapes for the
convolutional layers and global max pooling operation. Nb is
the number of instances in each batch, which is set to 8 in our
experiments.

The proposed network is constructed by stacking convolu-
tional layers and global maximum pooling [18]. The output
feature map Z of each layer ci is obtained as

Zci = ReLU
(
Zci−1 ∗ Kci + bci

)
, (2)

where ∗ is the convolutional operator, c denotes the layer
index, K and b denote the trainable filters and biases, respec-
tively, and the rectified linear unit activation function (ReLU)
is defined as f (x) = max(0, x). In particular, in the first
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Fig. 2. Architecture of the proposed deep neural network for fall detection.

convolutional layer c1, 300 filters {kc1
j }300

j=1 of size 9 × 1, are
convolved with the input time series x with stride 1. A bias
value is added and the activation function is applied to the
output resulting in a feature map Zc1 with a depth of 300. In
the second convolution layer c2, feature map from the previous
layer Zc1 is convolved with 200 filters {kc2

j }200
j=1 of size 7 × 1

with stride 1. A bias value is added and ReLU activation func-
tion is applied to the output resulting in a feature map Zc2 with
a depth of 200. Finally, in the third convolution layer c3, fea-
ture map from the previous layer Zc2 is convolved with 100
filters {kc3

j }100
j=1 of size 5×1 with stride 1. After adding the bias

value and applying the ReLU activation function, the resulting
feature map Zc3 has a depth of 100. It should be noted that in
order to capture the local temporal information, all the train-
able filters used have small sizes, i.e., 9 × 1, 7 × 1 and 5 × 1.
The convolutional layers are followed by one pooling layer
and one output layer for class prediction. The output of the
third convolutional layer Zc3 , is down-sampled by the pool-
ing technique. To this end and in order to lower the spatial
dimensionality of the convolved extracted features, a global
maximum pooling layer is employed. The pooling mechanism
is performed by selecting the maximum value of the convolved
features in the last convolutional layer. In the output layer, the
softmax activation function is used as

hr = exp(Zr)
∑C

v=1 exp(Zv)
, for r = 1, 2 (3)

where C = 2 is the number of classes, Zr is the rth score of the
output layer and hr denotes the output of the softmax function,
i.e., the probability of the predicted class. Adam optimizer is
used in the learning process [19] and categorical cross-entropy
cost function is used to measure the performance of the model
based on the true labels and probabilistic outputs of the soft-
max function. The entire network is trained in batch mode,
i.e., the number of instances evaluated before a weight update
in the network, using the back-propagation algorithm to itera-
tively update the weights and minimize the cost function. It is
noted that the network architecture is optimized for a higher
classification performance using grid searching and cross val-
idation on the training set, which constructs and evaluates the
model for each combination of parameters. To this end, the
training set is divided into 3 folds, two folds for training and
the other one for validation.

IV. EXPERIMENTAL RESULTS

Experiments were conducted on a set of radar data collected
in a realistic room environment to evaluate the performance
of the proposed fall detection method. All of the deep learn-
ing tasks were implemented using Keras that is backended
by TensorFlow package.1 For comparison purposes, several
approaches are considered which are based on multi-layer per-
ceptron (MLP), k-nearest neighbors (KNN) [1] and dynamic
time warping (DTW) [20], [21]. It is known that KNN
classifier when using DTW as a distance measure, i.e., KNN-
DTW, is considered state-of-the-art [20], and provides a better
performance than the feature-based methods [20]. In addition,
long-short-term-memory recurrent neural networks (LSTM-
RNN), known to be a baseline in time series classification,
are used for comparison purpose. In the proposed method,
the radar return data is first processed to obtain the range-
integrated time series data. The resulting time series is fed
into the proposed network to test whether or not an specific
time series represents a fall incident.

Table II gives classification metrics obtained using the
proposed method and those of the other methods, namely, three
MLP networks with three hidden layers having 50, 100, neu-
rons in each layer, KNN with different number of neighbors
(e.g., k = 5 and 10), DTW with different warping win-
dow of sizes W = 5 and 10, i.e., DTW(5) and DTW(10),
and LSTM-RNN. The LSTM-RNN network structure and its
hyper-parameters are tuned for the best classification results
on a validation set. More specifically, the optimal number of
LSTM units at every time step of the network is selected over
a range of 8 to 128 units and the number of LSTM layers is
selected over a range of 1 to 4 layers. The number of train-
ing epochs is set to 10000 epochs and using early-stopping,
training is halted as soon as the validation accuracy decreases.
In a leave-one-subject-out cross validation, the classifiers are
trained using the radar data for four of the subjects and tested
using the data from the fifth subject. It is seen from this table
that the proposed method outperforms the other methods by
providing higher recognition rates in presence of an unseen set

1The dataset and code used in this brief work is available at
http://meddev.eecs.uottawa.ca/radar.html.
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TABLE II
CLASSIFICATION METRICS (%) OF THE PROPOSED FALL DETECTION

METHOD AS WELL AS THOSE OBTAINED USING MLP, DTW, KNN AND

LSTM-RNN, IN A LEAVE-ONE-SUBJECT-OUT CROSS VALIDATION

Fig. 3. Classification metrics comparison of the proposed fall detection
method and those of the other methods in a subject cross-validation sense.

of data. In particular, the proposed method achieves 95.83%
accuracy, 92.31% precision, 100% sensitivity and 91.67%
specificity, which are higher than those yielded by the other
methods. Remarkably, the proposed method performs better
than the best baselines 5NN-DTW and LSTM-RNN by about
10% and 7%, respectively, in terms of accuracy. The supe-
rior performance of the proposed method using convolutional
neural network is due to the fact that the structure of the con-
volutional model captures the nature of signals and their local
relationships in feature representation more accurately than the
other methods for the fall detection problem. In addition, in
terms of computational complexity, the proposed method has a
lower computational complexity compared to 5NN-DTW and
LSTM-RNN, since its required CPU time on an Intel Core
i7 2.93 GHz personal computer with 16 GB RAM is 30 sec
per each training epoch and 2.36 sec at the test time, while
5NN-DTW runs in 1708 sec and the required CPU time for
LSTM-RNN is 43 sec per each training epoch and 3.51 sec
at the test time. In addition, the number of trainable parame-
ters needed for the proposed convolutional neural network is
531,702, while that needed for the LSTM-RNN based method
is 1,602,048. Fig. 3 illustrates classification metrics obtained
using the proposed method as well those obtained using the
other methods in a one-subject-out cross-validation sense. It is
seen from this figure that the proposed method provides higher
values for accuracy and sensitivity than the other methods.

Fig. 4 (a) shows cross-entropy loss values on the training
and test sets obtained using the proposed method. It is known
that the main objective in a learning model is to reduce (min-
imize) the loss function’s value with respect to the model’s
parameters through optimization process. Thus, the gradually
decreasing trend of loss seen from this figure demonstrates

Fig. 4. (a) Cross-entropy loss, and (b) accuracy values for the training and
test sets, obtained using the proposed deep neural network.

TABLE III
CLASSIFICATION METRICS (%) OF THE PROPOSED FALL DETECTION AND

THOSE USING THE OTHER METHODS IN A 5-FOLD CROSS-VALIDATION

that the network is successfully trained after a fixed number
of iterations, i.e., epochs. The results are averaged over 20
runs, and in each run, the number of epochs is set to 100.
Fig. 4 (b) depicts the accuracy values on the training and test
dataset obtained using the proposed method. It can be seen
from this figure that the accuracy values improve as epoch
value increases and reach a steady state after about 50 epochs.

In addition, to further evaluate the recognition performance
of the proposed method, the dataset is partitioned into five sub-
sets and a subset is used for testing, whereas the other four
subsets for training, i.e., 5-fold cross-validation. Table III gives
classification metrics obtained using 5-fold cross-validation for
the proposed fall detection method and those obtained using
the other methods. It is seen from this table that the proposed
method is capable of detecting falls with higher accuracy, sen-
sitivity and specificity values, indicating the capacity to better
detect a fall incident when it occurs to avoid false alarms. In
particular, the proposed method outperforms the other methods
by providing 92.72% classification accuracy which is higher
than that of the state-of-the-art.
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Fig. 5. (a) Feature maps (activations) of the three convolutional layers of the
proposed model, and (b) activations of global max pooling and output layer,
when a time series from the test set is fed into the trained network.

To understand automatically extracted features at each layer,
feature maps (activations) of the convolutional layers, global
max pooling and output layer are depicted. Fig. 5 shows acti-
vation of the three convolutional layers for one sample time
series as well as those of the global max pooling and out-
put layer. It is seen from this figure how a time series is
decomposed into different filters learned by the network. It
is noted that after global max pooling, activation becomes
increasingly abstract and less visually interpretable. It is also
noted that activations in the higher layers carry increasingly
less information about the visual contents of the time series,
and more information related to the class of the time series.

V. CONCLUSION

A new fall detection method has been proposed using an
ultra wideband radar and a supervised learning approach based
on deep neural network. Radar data has been collected in a
room environment by considering the home healthcare setting.
The proposed network have been devised by deriving a time
series from the radar back-scattered matrix and feeding it to a
deep convolutional network to automatically learn multi-level
features from radar time series data. Experiments have been
conducted to assess the performance of the proposed method
and to compare it with that of state-of-the-art. The results have
demonstrated that the proposed fall detection method outper-
forms LSTM-RNN, MLP and KNN-DTW algorithms in terms
of providing higher classification metrics and significantly
lower CPU time. It has also been shown that the proposed deep
fully convolutional neural network-based method by extracting

multi-level features from radar time series data can circumvent
heuristic feature extraction used in time-frequency analysis of
the radar return signals. The significant improved performance
of the proposed method especially in leave-one-subject-out
cross validation indicates its generalization capability.
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