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Abstract: Classification is presented as a pre-processing step in this study. The state of the subject is classified as the
unmoving state with normal breathing (normal breathing class), unmoving state with no breathing (stop breathing class) or the
state when the subject is moving (erratic signal class) before breathing estimation algorithms are applied. Estimation algorithms
may be applied to obtain breathing rate if normal breathing class is detected or alarms may be generated if stop breathing is
detected, and fine-grained classification of activities may be pursued if the erratic signal is detected. Experiments were
performed using a single-channel pulse-modulated continuous wave radar with three subjects for a total of 135 min. In each
experiment, the subject was continuously monitored for 15 min and the subject performed activities that resulted in a signal that
belonged to one of the three classes. Besides extracting a feature that assessed the distribution of energy of the signal in the
frequency domain, a novel nonlinear time series feature extraction method based on the higher-dimensional embedding
technique was applied to ascertain periodicity of the reflected signal. Bayes classifier was used to classify each 5-s segment of
radar returns. A 30-fold cross validation resulted in 97% of overall classification accuracy.

1 Introduction
In the past, radars were used in military applications mostly for air
defence and as a sensor for passenger airplane location and
guidance in civilian applications. Nowadays, radars are
increasingly used as a sensor for breathing rate monitoring,
because they are contactless, privacy friendly and generally safe.
Contactless monitoring using passive sensors such as video
cameras invades the privacy of people and does not perform well in
the absence of a line of sight [1, 2]. On the other hand, radars can
penetrate occlusions depending on the frequency of transmission
and the type of occlusion [3]. Hence, radars are more versatile
contactless sensors for monitoring vital signs. Radars are currently
being used as contactless, standoff sensors in various civilian
applications such as fall detection of elderly people in residential
care facilities [4], detection of attempted suicide events in prisons
[5], monitoring of respiration and heart activity in nursing care
facilities [6] and finding human subjects in search and rescue
applications [7]. Essentially, radars are penetrating the biomedical
sector as a useful remote health monitoring sensor.

The proposed work is a part of a larger project whose eventual
goal is to perform long-term monitoring of elderly people and
inmates. In this context, monitoring includes estimating the
breathing rate while the subject is not moving and classifying the
types of activities when the subject is moving and generating an
alarm in the case when fall or other dangerous event is detected
such as an attempt of a suicide in prison. Our previous work,
therefore, led to publications where breathing was estimated when
the subject was not moving [8] and when the subject was walking
[9] and very fine-grained classification of activities was done with
more than 40 features [10]. However, for this work and any other
work that involves real-time and long-term monitoring, it is
important to detect the state or activity of the subject before
applying other signal processing algorithms. For example,
breathing estimation algorithms mainly assume that the person is
not moving and that the signal is stationary. Hence breathing
estimation may be attempted only after ensuring that the person is
not moving. This study aims to develop a preprocessing step using
classification where only course-grained classes will be determined

based on a small set of features. Subsequent to this preprocessing
step, appropriate signal processing steps may be undertaken.

Both ultra-wideband (UWB) and continuous wave (CW) radar
systems have been used for non-contact health monitoring. CW
radars utilise the Doppler shifts in the reflected signals off the
subjects to estimate the breathing and heart rate. Fourier spectrum
analysis is often used to estimate breathing and heart rate from the
CW radar signal reflected from the chest and peaks of harmonics
are interpreted as estimates of breathing and heart rate [11–14].
Interestingly, almost all the existing works in the literature was
carried out assuming that the subject is stationary and breathing
normally. When the subject is stationary and alive but has stopped
breathing, Fourier analysis may still present a peak frequency in
the range of breathing due to the noise harmonics which can be
misleading [15, 16]. As a consequence, Fourier analysis may not be
able to accurately detect the cessation of breathing. However, it is
very important to recognise this state and to generate alarms.
Before conducting any Fourier analysis, care needs to be taken to
ensure that there is no Doppler contribution due to the motion of
other body parts. Alternatively, it is necessary to ascertain if linear
or nonlinear signal analysis should be undertaken as a first step
towards processing the signal. To the best of our knowledge, such
identification or classification is not commonly considered as part
of preprocessing.

In general, more advanced signal processing methods are
needed to extract the information related to breathing [17–20].
Only recently the role played by the radar cross section (RCS) of
the human body in the design of the system and algorithms was
investigated in [21]. Although the role of RCS was studied for
stationary subjects, this work provided no guidance for the
development of signal processing methods. Furthermore, in [22], a
noncontact UWB impulse radar-based approach was proposed for
sleep apnea detection. Experimentation was done in sitting position
at varying distances from the radar to ascertain the estimation
accuracy of the amplitude of chest motion. Since short impulse
radio signals were used as radar signals, multiple peak detection in
the time domain was used to ascertain the disposition of the chest
and then was followed by regular Fourier analysis. Although the
study succeeded in estimating the breathing rate, it could not
estimate the breathing rate when there was movement. We
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recognise this issue and hence we propose a paradigm different
from those that exist in the current literature for signal processing
of the radar received signals.

In the proposed paradigm, prior to applying any more detailed
processing or fine-grained classification on the radar received
signal, the received signal is categorised as one of the several
classes. Depending on the class, an appropriate method for spectral
analysis, estimation or fine-grained classification is carried out.
Thus, classification is viewed as a preprocessing step instead of
traditional thinking where it is considered as a post-processing
step. In this classification task, three types of classes are
considered, each of which requires a totally different type of
processing. These three classes are (i) normal breathing, which is
related to an unmoving subject with regular breathing and
breathing estimation can be done using spectrum analysis
techniques such as Fourier transformation, (ii) erratic signal which
is related to an irregular breathing signal or the signal corrupted
with movement artefacts of the subject which might require finer-
grained classification and potentially advanced signal processing
algorithms for breathing estimation while walking if walking class
is detected (iii) stopped breathing which is the absence of breathing
pattern due to the holding of the breath or undergoing sleep apnea.

Classification algorithms have been used to distinguish various
activities of the monitored subject. In most of these works, a set of
human activities were considered and depending on the target
classes, different features were extracted mostly from the time and
frequency domains and learning algorithms were applied to
classify the signal based on extracted features [10, 23–27]. In some
applications, the frequency content of the radar signal was divided
into different frequency bands representing breathing, heart
activity, and body motion, and features were extracted from each
band of frequency [5, 28, 29]. In [24, 25, 30], features were
extracted from spectrograms of the radar returns to classify them
into various activities. A comprehensive set of features was
extracted in [10] and feature selection was used to find the most
informative and distinguishing features among classes of human
activities. Besides studying time and frequency features,
researchers have applied other methods of feature extraction using
wavelet packets [31], entropy analysis [32] and empirical mode
decomposition [33, 34] to monitor and classify human activities.

In this work, we implement a classification algorithm that
extracts few relevant and useful features related to breathing
patterns contained in the radar reflections and classifies short time
segments of radar reflections into one of the classes given in
Table 1. According to the American College of Emergency
Physicians [35], an adult breathes 12–20 times per minute which is
equivalent to 0.2–0.3 Hz. The normal heart rate for healthy adults
ranges from 60 to 100 beats per minute (bpm) or 1–1.667 Hz.
Therefore, the distribution of the spectrum of the signal in these
ranges of frequency contains salient information related to normal
breathing. The magnitude of the received signal is also an
informative feature since physical activity increases the amplitude

of the reflected radar signal and holding the breath decreases it.
This feature needs to be normalised properly across subjects and
sessions of experiments [36, 37]. Periodicity in the breathing
pattern in the reflected signal contains crucial information in order
to distinguish between normal breathing and erratic signal.
Although movements of the chest caused by breathing and heart
beat repeat over time, these movements cannot be considered as
purely periodic. For instance, physical activity or irregularity in
breathing patterns may affect the periodicity of the signal or even
make it quasi-periodic. Furthermore, normal and stop breathing
may have different periodicities to stop breathing contains only the
radar reflections related to movements of the heart in case a subject
is not moving. In reality, the order of periodicity of the reflected
signal may vary from very close to periodic (stationary subject
with normal breathing) to aperiodic (erratic breathing or random
body movements) [38]. To obtain an estimate of the periodicity as
a feature, the proposed method uses embedding space to process
radar reflections from a human. 

Embedding space is a powerful tool to estimate the periodicity
of natural signals [39]. Although periodicity of natural signals has
been estimated from embedding space and used as features in
various applications [40, 41], it has not been used before to assess
the classification of the type of signal in the received radar
reflections.

The paper is organised as follows. The proposed method, as
well as detailed explanations of each step, is presented in Section 2.
Results obtained from implementing different blocks of the method
are presented in Section 3. Section 4 discusses the results and
potential applications of the developed method. Also, note that in
this work, the term ‘radar signal’ is used interchangeably to mean
the output signal obtained from the radar unit used in this work.

2 Proposed methodology
2.1 Experimental setup and data collection

An SR12003 phase-modulated CW (PMCW) radar is used in this
project, which is a prototype manufactured by K&G Spectrum
(Gatineau, QC, Canada). The radar unit has a 3 dB beamwidth of
120° × 5°, a sampling frequency of 1.48 kHz and an operating
frequency of 24.125 GHz. The phase of the transmitted waveform
is modulated using a 1023-bit long pseudo-random noise (PN)
binary sequence. The clock frequency of the PN sequence is 200 
MHz, which is equivalent to a 5 ns sub-pulse width. This radar
system delays the transmitted PN sequence by multiples of its
clock period and correlates the delayed PN sequence with the
received reflections which results in 0.75 m range bins. The carrier
frequency is then demodulated from the correlated signal using a
low pass filter with a cut-off frequency of 10 kHz and this
processed signal is available as an output of the device. All further
processing mentioned in this work uses this output signal. A
proprietary software, KGScope, provided by K&G Spectrum Inc.,
was used to control the system and record data. Using this software
the radar was set to dwell on a range bin where the target subject
was present.

Fig. 1 shows the block diagram of the proposed method. As
shown in this block diagram, two kinds of signals are collected in
our experiments, namely, radar reflections and respiratory
inductance plethysmography (RIP) signal. The RIP band is used to
record changes of volume of the chest while the subject is
breathing. Radar reflections contain reflections due to all the
movements from the subject during the experiments, including
those movements of the chest during the experiment. 

The RIP band was placed around the subject's thorax. The RIP
band was connected to an amplifier (model 15LT Physiodata
Amplifier System with 15A54 Quad Amplifier; Grass Telefactor;
Warwick, RI, USA). The RIP band signal was amplified with a
gain of 200 and a bandwidth of 0.1–30 Hz. The signal acquired
from the RIP band was sampled at 1000 Hz using a 16-bit
analogue-to-digital converter board (model USB-6216; National
Instruments; Austin, TX, USA).

Three male subjects ageing from 23 to 26 with no history of
cardiovascular problems or disorder participated in the data
collection and each subject repeated the test session three times

Table 1 Three classes of radar reflections considered in
this work
Type of
received
signal

Source Further possible
action

Potential
processing
technique

normal
breathing

stationary
subject with

regular
breathing

estimation of
breathing and

heart rate

spectral analysis

erratic subject with
physical activity

or irregular
breathing

detection or
diagnosis

depending on the
application

fine-grained
classification,

breathing
estimation while

moving
stop
breathing

alive stationary
subject with no

breathing

alarming the
relevant person

and monitoring the
heart beat

spectral analysis
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[42]. Subjects were standing in front of the radar which was 4 m
away. The radar was placed in a horizontal orientation so that the
beam spread across the entire subject. Experiments were conducted
in a room with wide open space with few sources of reflection.
Fig. 2 shows the test setup. The height of the radar was fixed for all
experiments. At the beginning and end of each test, the subject was
asked to make a jolting motion (e.g. quickly standing up and sitting
back down). This motion resulted in a sharp abrupt change in the
RIP and radar reflected signal and was used to time align the two
signals. 135 min of radar return signals and the signal from the RIP
band were collected. A single test was 15 min and was broken
down into three 5-min sections as follows:

Normal breathing: Subject was in front of the radar as still as
possible, breathing normally. The radar reflections recorded in this
phase of experiment corresponds to normal breathing.
Physical activity, erratic breathing during recovery, normal
breathing: Subject was asked to perform jumping jacks for 30 s to
increase the heart rate and breathing rate. For the remaining 4 min
and 30 s, the subject was asked to let the breathing and heart rate
return to normal. The radar reflections acquired in the first 30 s is
erratic due to the physical activity. After the physical activity, the
recorded reflections are considered erratic because of irregular
breathing as the subject recovers from physical activity. After the
recovery phase is passed, the recorded reflections correspond to
normal breathing.
Holding breath, erratic breathing during the recovery, normal
breathing: Subject was to hold the breath for as long as possible
until it is no longer comfortable and then to continue breathing
allowing his or her breathing to return to normal. The subject
remained as still as possible during the breath hold. The signal
recorded in this phase of the experiment is to stop breathing signal.
Upon starting to breath, the subject generally starts with deep
breathing as a part of recovery from holding the breath. This part of
the recovery period is considered as erratic. The reflected signal
recorded after the deep breathing phase would contain normal
breathing.

The goal of this work is to obtain the class information as
described in Table 1. The RIP signal is a reference signal used to

label radar reflection segments for training and testing the
classifier. RIP and radar reflected signals are first synchronised and
segmented in the time domain. Each 5-s segment of RIP is used to
label to the corresponding segment of radar reflections, as normal
breathing, erratic signal or stop breathing signal. The labelling of
the radar reflections is done using an automated process and
confirmed/corrected manually (if needed) by carefully matching
the timing instructions given to the subjects and labels. Out of 1620
segments, 18 were corrected manually. 

Relevant features are extracted from each segment of the radar
signal. The collected data is divided into training and test datasets.
Features of training data set along with the corresponding labels
are used to train the classifier. Features of a test dataset are fed to
the trained classifier and the labels of test segments are predicted
by the trained classifier. Predicted class labels are then compared
with the test labels (assigned using the RIP signal) to measure the
confusion matrix including classification accuracy in each class
and sensitivity and specificity between classes.

Two methods of cross validation are applied in this work. First,
we use K-fold cross validation in which the dataset is divided into
K subsets. The model is trained and tested K times. Each time
K − 1 subsets are used as training datasets, while the Kth subset is
used to test the classifier. Second, subject cross validation is used
in which the data from the two subjects is applied to train the
classifier and the data from the third subject is used to test it. While
K-fold cross validation assesses how the classification results will
generalise to an independent dataset, subject cross validation
indicates how it will generalise to the dataset from new subjects
who are not included in the training dataset.

2.2 Radar feature extraction

The radar signal is a nonlinear function of chest displacements due
to the heart activity and breathing. Distribution of energy in the
spectrum was extracted from the frequency domain while
periodicity of the signal was extracted from embedding space.

2.2.1 Features extracted in the frequency domain: To obtain
the spectrum of each time segment, Welch periodogram is applied
[43]. For a time series x = xn, n = 0, …, N − 1, the power
spectrum Px ejω  is the Fourier transform of the autocorrelation
sequence, written as

Px ejω = ∑
k = − N + 1

N − 1
rx(k)e− jkω, (1)

where rx(k) is the autocorrelation of the signal calculated as

rx(k) = 1
M ∑

n = 0

N − 1
xn + kxn . (2)

In this work, the frequency of interest is limited to 0–11.5 Hz.
Since the radar reflected signal is a nonlinear function of chest
displacements, it contains not only the main harmonics of

Fig. 1  Block diagram of the proposed method for classification of radar signals in order to detect the type of received signal. RIP signal is used to assign a
label to the corresponding segment of the radar signal. The collected dataset is divided into training and test subsets. Training data is used to train the
classifier. Trained classifier is used to predict the class labels for test data and predicted class is compared with test labels to assess the performance of the
trained classifier

 

Fig. 2  View of experiment setup [42]
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breathing and heart rate but also its higher harmonics and inter-
modulation components. The fraction of the total energy in a range
of frequencies corresponding to breathing to the total energy in the
spectrum changes when breathing changes from being normal to
erratic or when breathing stops. This ratio is expected to be the
largest when breathing is normal. Therefore, a wide range of
frequencies instead of a very narrow frequency range
corresponding to the breathing frequency is used to extract the
relevant power spectrum density (PSD)-ratio feature [44, 45]. The
PSD-ratio feature of the radar signal is extracted as the ratio of the
energy of the signal in the range of breathing and heart rate (0–2.3 
Hz) to the total energy of the signal in a wider range of frequencies
(0–11.5 Hz).

2.2.2 Modelling the radar signal in embedding
space: Frequency domain processing methods are not able to
distinguish between signals that have the same power spectra but
different phases and/or higher-order spectra [46]. In a radar system,
the received signal is phase modulated due to the movements of the
target object. Therefore, it is necessary to search for patterns not
only in the time and frequency domains but also in a higher-
dimensional transformation of the time series that is able to reveal
the phase information. Embedding space is a multi-dimensional
space in which a signal is plotted against time-delayed versions of
itself. For a time series x = xn, n = 1, …, N, each point of the d-
dimensional embedding space is defined as

xn = xn − (d − 1)τ, …, xn − τ, xn , n = (1 + (d − 1)τ), …, N, (3)

where τ is the time lag and d is the dimension of embedding space.
The entire embedding space is generated by trajectory matrix X
defined as

X =

x1 + (d − 1)τ

x2 + (d − 1)τ

⋮
xN

=

x1 + (d − 1)τ … x1 + τ x1

x2 + (d − 1)τ … x2 + τ x2

⋮ ⋱ ⋮ ⋮
xN … xN − (d − 2)τ xN − (d − 1)τ

. (4)

This trajectory matrix is usually referred to as an attractor and is
considered as a method for determining the periodicity of nonlinear
time series [47, 48]. The strong periodic component of the signal
will result in the embedding attractor that occupies less volume in
the embedding space.

Dimension and time lag are two parameters used to create the
embedding space. In this work, the dimension of the embedding
space was set to 2. Since we were able to create distinguishable
two-dimensional (2D) embedding spaces for three classes
mentioned in Table 1 and we aimed to keep the feature extraction
process computationally inexpensive, higher-dimensional
embedding spaces were not assessed. The time lag of embedding
space is usually calculated by finding the first local minimum of
auto-mutual information (AMI) or the first zero-crossing of the
autocorrelation function between a time series and its delayed
versions [49]. In the proposed method, we use AMI to estimate the
time lag, since it provides a more appropriate delay value [48, 50,
51]. This is due to the fact that AMI is capable of measuring
nonlinear dependencies, which are the case in radar breathing data.
A low value of AMI results when there is little information
common between the two time series. To construct the embedding
space, a number of time lags are considered as candidates. For a
candidate time lag τ, the AMI between time series x = xn and
y = ym = xn − τ is calculated as

AMI(x, y) = ∑
n, m

p xn, ym log p(xn, ym)
p(xn)p(ym) , (5)

where p xn  is the probability of measuring a data value xn,
p xn, ym  is the joint probability of measuring xn and ym. To extract
probability density functions mentioned in (5), the range between
the minimum and maximum of the time series is first divided into a

finite number of non-overlapping sub-intervals. Then, the
histogram method, which is based on counting the relative
occurrences of the time series values within each sub-interval is
used [52]. AMI is maximum for τ = 0, which is equal to the
entropy of time series. As time lag increases from zero, AMI
decreases. However, depending on the periodicity of the signal,
AMI starts to oscillate for time delays bigger than a certain point.
The first local minimum of the AMI curve versus candidates of
time lag is taken as the proper time lag for constructing the
embedding space [53].

After constructing the trajectory matrix, the attractors
constructed for various classes are modelled and parameters of the
model are extracted as features of the signal in the embedding
space. For low-dimensional attractors, the model can be chosen
heuristically.

Here, linear regression is used to model the 2D attractors
obtained in embedding space and use the parameters that indicate
goodness of the fit as features of the radar-reflected signal in
embedding space. More details about extracted features from
embedding space are given in Section 3.3.

3 Results
3.1 Segmentation

135 min of RIP and radar signals are recorded as explained in
Section 2.1. The sampling frequency is 1 kHz for the RIP signal
and 1.48 kHz for the radar reflected signal. Two signals are
synchronised using the signature of jolting motion at the beginning
of recordings. The signals are segmented into 5-s intervals. Fig. 3
shows an example of radar segments for each type of breathing in
both time and frequency domains. We chose extreme examples to
show the difference between three types of recorded radar reflected
signals. RIP signal segments are used to label the type of the
corresponding segment in the radar signal. 

3.2 Radar feature extraction in time and frequency domains

The signal output from the radar device (‘radar signal’) is down-
sampled by a factor of 10. Each 5-s interval is smoothed using a
moving average filter with the window length of 0.07 s and the
variance of the signal is calculated. Then each segment is
normalised using the equation x = (x − μ)/σ and the Welch
periodogram of the signal is calculated with 2-s sub-segments and
1-s overlap. In the frequency domain, the ratio of PSD in the range
of 0–2.3 and 0–11.5 Hz is calculated as an index of the energy of
breathing harmonics to the energy of other harmonics existing in
the signal. Fig. 3 shows three segments of the signal in time and
frequency domains labelled as stop breathing, normal breathing,
and erratic signal. The PSD-ratio feature is 0.50 for stop breathing,
0.22 for erratic breathing, and 0.86 for normal breathing,
respectively. The PSD-ratio is a distinguishing feature for these
three classes of signals. The PSD-ratio has a low value for erratic
breathing since the erratic signal has high-magnitude harmonics
outside the range of breathing frequencies. On the other hand, the
PSD-ratio is high for normal breathing because the highest
harmonics of normal breathing signals are located in the range of
breathing frequencies. For stop breathing, there is a peak in the
frequency range of heart beat. In this case, the energy of the
spectrum is distributed over the range of 0–5 Hz, therefore the
PSD-ratio feature is not as high as normal breathing and not as low
as the erratic signal.

3.3 Feature extraction in embedding space

Down-sampled and normalised received radar reflected signal
segments are transformed to 2D embedding space with a time lag
of 0.1 s. Fig. 4 shows the AMI graph versus a range of candidate
number of samples (time lags). From this graph, we see that the
first local minimum occurs in about τ = 0.1 or delay of 15 samples.
As stated in Section 2.2.2, the periodicity of the signal can be
indicated by the characteristics of the constructed attractor in
embedding space. We know that the normal breathing pattern is
close to periodic, while the erratic signal does not exhibit a
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periodic pattern. We used linear regression to extract features of
these attractors. The fitted linear models are also shown in Fig. 5.
Comparing three segments of the signal as shown in Fig. 3 (time
and frequency domains) and Fig. 5 (embedding space), illustrates
how periodicity of signal manifests in embedding space for this
specific type of signal. 

Different features can be extracted from the linear model of
embedding space. The slope of the fitted line shows the correlation

between the time series with a delayed version of it. The goodness
of linear fit is used as an indication of periodicity. For the three
example segments of the signal shown in Fig. 3, the obtained
correlation is 0.45, 0.05 and 0.82 for stop breathing, erratic signal,
and normal breathing, respectively. To measure the goodness of fit,
we extract two parameters, which are normalised variance of linear
regression and the sum of residuals. The closer variance of fit to 1
is, the better fit we have achieved. This parameter is 0.2, 0.00 and

Fig. 3  Examples of three types of radar signals in time and frequency domains
 

Fig. 4  Average of mutual information versus time lag. The first local minimum of mutual information happens when time lag is 15 samples or 0.1 s
 

Fig. 5  Embedding space for samples shown in Fig. 3 when normalised in the time domain. The embedding spaces are modelled with linear regression and
three features that describe the goodness of fit are extracted
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0.68 for stop breathing segment, erratic segment, and normal
breathing segment shown in Fig. 3, respectively. From Fig. 5, we
observe that the sum of residuals is low for normal breathing,
higher but relatively similar to stop breathing and erratic signal.
The reason why stop breathing and erratic breathing look the same
in terms of residuals is that we normalised the segments in the way
explained in Section 3.2. Normalisation is necessary for comparing
the correlation and variance of linear regression. However, the
residuals of linear regression for stop breathing are much smaller
than the residuals in case of erratic breathing in terms of actual
values (without normalising time domain signals). Therefore, in
order to make this feature distinguishable between stop breathing
and erratic signal, we divided the sum of residuals by the variance
of the time domain signal. The resulted feature can be written as

R(X) =
∑n = 1

N − 1 res2 xn

σ2 , (6)

where X is the 2D embedding space constructed for the time series
x = xn, n = 1, …, N, which was described in (3). This 2D
embedding space is fitted to a line using linear regression as shown
in Fig. 5 and res xn  is the residual of linear regression
corresponding to point xn of the embedding space. The scalar σ2 is
the variance of x in the time domain before normalisation. For the
three segments of the signal shown in Fig. 3, this parameter is
calculated as 0.8, 0.01 and 0.11 for stop breathing, erratic signal,
and normal breathing, respectively.

3.4 Classification results

Three features, namely, PSD-ratio, variance of linear regression in
embedding space and R X  were selected. Table 2 summarises the
extracted features for three classes of breathing patterns. 

Bayes classifier is chosen as the classifier as the dataset is
unbalanced. Bayes classifier is often preferred for classification in
case of unbalanced dataset [54]. This classifier fits a Gaussian

distribution to the features and as far as the number of class
instances (or samples of a particular class) is sufficient to
approximate the Gaussian distribution. Classification accuracy
which is defined as the ratio of the number of correctly predicted
labels to the number of samples in the dataset is not dependent on
the actual size of each class and is dependent on the overlap
between the distributions that describe the classes. Although
independency of features and normal distribution are assumed
while designing a Bayes classifier, it has been shown that this
classifier performs well in terms of classification accuracy even
when these assumptions are violated [55]. The three above
mentioned features were fed to the Bayesian classifier and a 30-
fold cross-validation was used to validate the classifier. The overall
classification accuracy of 97% for stop breathing event was
obtained. The confusion matrix is given in Table 3. 

To investigate whether the classifier is over-trained by the
features of training subjects, subject-excluded training is carried
out and the trained classifier is tested by the features of the
excluded subject. In this method, for each subject involved in this
dataset, a classifier is trained using the features extracted from
other subjects. The result of testing these classifiers is shown in
Table 4. The overall classification accuracy, in this case, is still
97%. However, this table shows when the received radar reflected
signal is erratic, subject independent classifier results in more false
alarms because it misclassified the classes, erratic signal and stop
breathing. 

The effect of random body movement (RBM) on the
performance of the proposed breathing signal classification method
is also investigated. To this end, we consider the radar signal model
discussed in [9] to model RBMs such as swaying. In particular, for
a subject in standing position, the radar baseband signal, s(t), can
be modelled as

s(t) = acos 2π
λ 2dB(t) + 2dH(t) + 2dRBM(t) , (7)

where a is the amplitude, λ is the wavelength of the PMCW radar,
dB(t) = Bsin 2π f Bt , dH(t) = Hsin 2π f Ht  and
dRBM(t) = Rsin 2π f RBMt  represent displacements of chest due to
the breathing and heart beats, and RBMs, respectively, B and H are
the maximum displacement of the chest due to these movements, R
is the amplitude of the RBM signal and f B, f H and f RBM are
breathing, heart beat and RBM signal frequencies, respectively. For
the sake of simplicity, no additive noise is considered in the model.
Inspired by this model, a pseudo-random sinusoidal signal is
integrated into our radar return signals. To this end, dRBM(t) is
integrated into each radar data segments corresponding to the
normal breathing to investigate the effect of RBMs on the normal
breathing classification. Inspired by this model, a pseudo-random
sinusoidal signal is integrated into our radar signals. To this end,
dRBM(t) is integrated into the segments of each radar data that
correspond to the normal breathing to investigate the effect of
RBMs on the normal breathing classification. Table 5 gives the
confusion matrix when the radar signal x, obtained during normal
breathing, includes RBMs, where R = max (x) and f RBM = 1 Hz.
This is a challenging case because the amplitude of swaying is at
least as high as the amplitude of breathing [56]. It is noted that
spectral analysis of postural sway has revealed that its vast
majority of energy is below 1 Hz [57]. It is seen from this table
that, as expected, by integrating RBMs in the received radar data
the number of confusions between normal and erratic breathing
increases. 

Next, dRBM(t) is integrated into the segments of the radar data
corresponding to the stop breathing to investigate the effect of
RBMs on the stop breathing classification. Table 6 gives the
confusion matrix when the radar signal x, obtained during stop
breathing, includes RBMs, where R = max (x) and f RBM = 1 Hz.
It is seen from this table that RBMs result in confusion between the
stop and erratic breathing signals. 

Regarding computational complexity, it is noted that the
proposed method is computationally efficient since the training is
done off-line. Required central processing unit time during testing

Table 2 Summary of features (mean ± Std)
Class Count PSD-ratio

(section 3.2)
Variance of
regression

R(X) in (6)

stop 67 0.61 ± 0.18 0.20 ± 0.17 1.13 ± 0.65
erratic 114 0.36 ± 0.24 0.13 ± 0.24 0.02 ± 0.04
normal 1439 0.93 ± 0.06 0.80 ± 0.13 0.06 ± 0.13
 

Table 3 Confusion matrix for 30-fold cross validation
Label Prediction

Normal Erratic Stop Sum
stop 2 (3%) 0 (0%) 65 (97%) 67
erratic 4 (3.5%) 109 (95.6%) 1 (0.9%) 114
normal 1404 (97.6%) 4 (0.3%) 31 (2.1%) 1439

 

Table 4 Confusion matrix for subject excluded training
Label Prediction Sum

Normal Erratic Stop
stop 2 (3%) 0 (0%) 65 (97%) 67
erratic 5 (4.3%) 101(88%) 8 (7.0%) 114
normal 1404 (97.6%) 4 (0.3%) 31 (2.1%) 1439

 

Table 5 Confusion matrix when normal breathing segments
include RBMs
Label Prediction Sum

Normal Erratic Stop
stop 2 (3%) 0 (0%) 65 (97%) 67
erratic 4 (3.5%) 109 (95.6%) 1 (0.9%) 114
normal 871 (61%) 565 (39%) 3 (0%) 1439
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is 0.084 s on an Intel Core i7 2.93 GHz personal computer with 16 
GB RAM.

4 Discussion
Current radar-based vital sign monitoring systems can only
estimate breathing when the subject is stationary and breathing
normally. Monitoring breathing rate of human subjects during
physical activity or with irregular breathing is still in its early
stages of research. This study presents a different paradigm for
monitoring breathing while the subjects are moving or when there
is irregular breathing. Instead of estimating breathing, this study
proposes to identify if the received radar reflected signal belongs to
one of the three classes, namely normal, erratic or stop breathing.
Once the signal has been identified as belonging to one of the three
classes, appropriate signal processing techniques may be applied to
estimate the breathing frequency. For instance, if the signal is
classified as normal breathing, then Fourier transform may be
applied to estimate the breathing rate. If the signal is classified as
stopped breathing, then an alarm may be generated as a precaution.
Spectral analysis using Fourier transform will then provide an
estimate of heart rate. However, when the signal is classified as
erratic breathing, then Fourier transform should not be applied and
the time-frequency approach such as the one described in [9] may
be considered. Unlike the traditional methods where classification
is attempted as a final stage of the signal processing chain, in this
work, it is treated as part of the pre-processing stage which would
enable an appropriate choice of a class-dependent signal processing
algorithm.

It has been shown in [42, 58, 59] that the breathing rate
estimation error is the highest when the subject is standing, while it
is the lowest when the subject is lying down on the bed. In other
words, the breathing rate estimation when the subject is lying down
is generally more accurate than when the subject is in the standing
position as there is almost no contribution by other small
movements such as swaying. In view of this, the proposed method
has focused on the more challenging case of standing position in
order to categorise the radar breathing signals. As shown through
our simulations when swaying has spectral components closer to
those of breathing, classification becomes challenging. This also
further establishes the premise of the study that signal processing
such as spectral analysis should not be applied blindly to the radar
signals and a class-dependent signal processing approach should be
adopted.

Supervised training of the classifier is achieved using the labels
given to each 5-s segment of the signal recorded from the RIP band
simultaneously with the radar signal. To extract relevant
information from radar reflections, which are able to distinguish
the three classes of the received signals (explained in Table 1, we
considered the distribution of energy of the signal in the frequency
domain. For normal breathing signal, energy was concentrated in
the range of breathing frequencies however, for the other classes, a
wider distribution of energy was observed.

Embedding space analysis was used in this work to distinguish
between classes. The embedding space constructed from the
received radar reflected signal related to a periodic normal
breathing can be accurately modelled by a linear regression, while
the other two types of signals result in low measures of goodness
of fit. Therefore, the goodness of fit of the linear model of
embedding space is chosen as the other distinguishing
characteristics among classes.

Bayes classifier is chosen to perform classification. Bayes
classifier is computationally inexpensive and outperforms many

other kinds of classifiers in case of the unbalanced dataset since it
forms a distribution out of samples of each class. Once the
distribution is formed, the classification accuracy is not dependent
on the size of each class. In this work, we use 30-fold cross
validation to make sure that there are enough points of minor
classes (96% of samples) to form the distribution properly. The
proposed classifier is tested in both subject-dependent and subject-
independent cases and overall accuracy of 97% is achieved in both
cases. However, slightly more false alarms are generated while the
classifier is subject-independent. The performance gap between
these two classifiers will be narrower if a larger dataset with more
subjects can be used to train the classifiers. In this work, we chose
to perform a hard decision for each class sample and assigned a
unique class label to it, since we mainly aimed to introduce the
concept and show the importance of classification of signals before
any further processing is undertaken. It should be noted that the
decision output of the Bayes classifier is the probability of
belonging to each class for each data sample. In real applications,
instead of relying on a hard decision, a combination of probabilities
of belonging to three classes may be used to adjust further analysis
of the signal.

The main contribution of this work is to propose a different
paradigm where classification is considered as a preprocessing step
that can be used before any estimation process is undertaken such
as in a radar-based vital sign monitoring system. In this study, it is
demonstrated that even in the most favourable case, where a
subject is facing the radar, the estimation of the breathing rate
using Fourier transform becomes unreliable, if breathing becomes
erratic. Hence, classification needs to be carried out before any
estimation can be attempted. Unlike, previous classifiers reported
on the classification of human activities, this classifier monitors the
subject continuously and provides a decision for transient segments
of the signal. The proposed approach has the potential for
generating alarms when cessation of breathing is detected by the
classifier. Note that this classifier makes a decision for each 5-s of
reflected radar signals which is a very short time interval. To have
a robust alarm generation, detection of consecutive stop breathing
segments may be in order. This strategy will significantly decrease
the probability of false alarms.

In this study, a single subject was monitored. One of the
applications of interest is to monitor a subject (an inmate or
elderly) when he or she is alone. Our approach can be extended to
monitoring more than one subject, which is left as work for the
future. Experiments were performed with a PMCW single channel
radar. This radar does not support coherent processing and hence,
introduced nonlinearities. However, our classification was
reasonably accurate regardless of these inherent nonlinearities. The
transmitted radar signal had a narrow beamwidth so that it was
capable of focusing on the subject's chest at the distance of several
metres. The subject was always in the same range bin (distance
from the radar) and the movements did not include walking. It is
noted that walking belongs to the same class as the erratic signal
and would represent the signal of higher energy and lower
periodicity than breathing signal. In this study, we focused on the
problem where the person was at one place doing some activities
while being at approximately the same distance from the radar.
Readers should note that this work has exposed the vulnerability to
incorrect estimations when ‘one size fits all’ approach to the signal
processing of radar signals is adopted.

In this work, different postures of subjects and relative
orientations between the subjects and the radar were not recorded.
In the experiments conducted in this work, subjects were facing the
radar directly and positioned at a fixed distance. Change of
orientation or position will affect the features and hence, the
classification results. This has been deferred for future research.

The length of segment for analysis has intuitively been chosen
to be 5-s in this work. The length of the signal needs to be long
enough, so that the segment of the signal carries enough
information about the low-frequency movements of the chest. On
the other hand, we need to make decisions quickly so that remedial
actions can be taken immediately for life threatening conditions.
False alarms can be reduced by intelligently merging consecutive
decisions of the algorithm. Such an attempt using the adaptive

Table 6 Confusion matrix when stop breathing segments
include RBMs
Label Prediction Sum

Normal Erratic Stop
Stop 2 (3%) 8 (12%) 57 (85%) 67
erratic 4 (3.5%) 109 (95.6%) 1 (0.9%) 114
normal 1404 (97.6%) 4 (0.3%) 31 (2.1%) 1439
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length of segments or overlapping windows will be investigated as
part of our future work.
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