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Abstract: The human visual system is attracted to the most dominant part of the image which is called salient region. There has
been a surge of interest in the past few years to efficiently detect the salient regions of images. In this study, a new salient
region detection method is proposed using the non-subsampled contourlet transform. It is known that this transform is capable
of providing a multiscale, multi-directional and translation invariant decomposition of images. The proposed saliency detection
method is realised by extracting various local and global features from the non-subsampled contourlet coefficients of the colour
channels. A saliency map is obtained based on a linear combination of the local features and the distribution of the global
features. In order to provide a better preservation of the structure and boundary of the objects and to obtain a more uniformly
highlighted salient region, the saliency map is abstracted using an optimisation framework. Several experiments are conducted
on sets of natural images to evaluate the performance of the proposed method. The results show that the performance of the
proposed method is superior to that of the other existing methods in terms of precision-recall performance, F-measure, and
mean absolute error values.

1 Introduction
It is known that the human visual system (HVS) is not capable of
analysing all the visual information due to the enormous amount of
received information. Thus, it is well accepted that the HVS has a
saliency detection property to rapidly detect the most important
part of a scene. In other words, the salient region of each image is
detected and processed, while non-salient regions are ignored. In
view of this, saliency detection has become an important research
area in the past decade and plays a significant role in various image
processing applications such as object of interest image
segmentation [1], adaptive image and video compression [2],
object-based image retrieval [3], image retargeting [4, 5], and
medical imaging [6], to name a few. A comprehensive review of
the works in saliency detection can be found in [7–9]. It should be
mentioned that since 2015, a few supervised or unsupervised
salient object detection methods have been proposed by utilising
deep convolutional neural networks [10–19], autoencoders [20],
and recurrent neural networks [21–23]. In general, a training-based
method has the potential to provide accurate results. However, due
to a tremendous amount of training required, our focus in this study
is on approaches that do not require training.

In the past few years, there has been a surge of interest in
developing saliency detection techniques both in the spatial [24–
30] and frequency domains [31–38]. In order to detect the entire
salient region uniformly, it is essential to retain an adequate range
of frequency components. In most of the spatial-domain methods,
the entire salient region may not be uniformly highlighted, since
the high-frequency components of the image are indiscriminately
discarded. On the other hand, the frequency-domain methods have
been developed to address this limitation. In [32], the quaternion
Fourier transform has been applied to the colour and intensity
features of the image. In [31], a wavelet-based salient point
detector for image retrieval has been proposed in which the global
variation of the pixels are measured by using the absolute wavelet
coefficients at the courser scales, and the pixels with higher global
variations are traced back in the finer scales. In [33], the wavelet
transform has been applied to the image colour channels and after
each decomposition level, a feature map is generated by setting the
low-pass coefficients to zero and applying the inverse transform.
Then, a local saliency map is computed by linearly combining the

feature maps of the colour channels at each level, while a global
saliency map is computed based on the likelihood of the features.
However, in a saliency detection method that uses the wavelet
transform, the wavelets are optimal only in representing point
discontinuities, but not effective in capturing line discontinuities,
which correspond to directional information in the image [39]. In
order to circumvent the lack of directional selectivity of the
wavelet, other multi-scale and multi-resolution representations,
such as the non-subsampled contourlet transform (NSCT) [40],
have been developed. This transform is not only able to capture the
smooth contours effectively in a flexible number of directions but
is also invariant under translations. Despite its superior capability
in representing the directional information of images, only a few
attempts have been made to address the problem of saliency
detection in the non-subsampled contourlet domain. For instance, a
saliency detection method has been proposed in [36] by fusing
local and global information. However, it has not fully taken into
account the effective visual features, such as texture and structure,
since these attributes provide significant information towards the
local and global characteristics of the image and are known to be of
great importance in saliency detection.

In view of this and the fact that developing accurate methods to
obtain saliency maps is an on-going research area, in this study, a
new salient region detection method is proposed by extracting local
and global features from the non-subsampled contourlet
coefficients of the three colour channels of CIELAB colour space at
different scales. The ability to do a localised multi-resolution
spatial and frequency analysis in the non-subsampled contourlet
domain makes it a superior tool to extract image details at different
scales. The local features are extracted from the local variations of
the low-pass coefficients whereas the global features are obtained
based on the distribution of the directional subband coefficients. To
extract the image visual features effectively, the saliency map thus
obtained is finally abstracted into meaningful regions by applying
an optimisation framework. Simulations are carried out to evaluate
the effectiveness of the proposed saliency method and to compare
it with other existing works.

The paper is organised as follows. Section 2 presents a brief
introduction of NSCT. Section 3 presents the proposed saliency
detection method in the NSCT domain. Simulation results are
provided in Section 4. Finally, Section 5 concludes the paper.
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2 Non-subsampled contourlet transform
The NSCT has been proposed as a multi-scale and multi-
directional decomposition framework for images [40]. NSCT is
composed of two filtering stages including non-subsampled
pyramid (NSP) and non-subsampled directional filter bank
(NSDFB). The multi-scale property is realised by using a two-
channel non-subsampled filter bank resulting in low- and high-
frequency images at each NSP decomposition level. Subsequently,
to capture the singularities in the image, NSP iteratively
decomposes the low-frequency component. As a result, the NSP
provides J + 1 sub-images comprising one low- and J high-
frequency image components having the same size as that of the
original image, where J denotes the number of decomposition
levels. Finally, multi-directional decomposition is achieved by
applying NSDFB to high-frequency images at each scale. NSDFB
is constructed by combining the directional fan filter banks and
then used to produce flexible directional sub-images with the same
size as that of the original image. Fig. 1 shows a schematic of the
NSCT decomposition process. In the following section, we
introduce the proposed saliency detection method in the NSCT
domain. 

3 Proposed non-subsampled contourlet-based
saliency detection method
In this section, the various steps of the proposed saliency detection
method are presented. Fig. 2 shows the overall framework of the
proposed saliency detection method. 

The proposed method involves generating local and global
feature maps. The local feature maps are generated in order to
detect pixels that are salient in a limited neighbourhood, while the
global feature maps detect pixels that are salient in the entire
image. To this end, the input image is first converted to CIELAB
colour space, having luminance, red/green, and blue/yellow
channels, denoted by L, a, and b, respectively. This colour space is
known to be perceptually more uniform than the red, green, blue
colour space and also more similar to the HVS perception. A
sample image and its L, a, b channels and the corresponding ground
truth are shown in Fig. 3. The NSCT decomposes each colour
channel into a number of levels, s = 1, …, S, in order to extract the
local and global features from the non-subsampled contourlet
coefficients. At each decomposition level, each channel is
decomposed into a low-pass subband and a number of directional
band-pass subbands as

As
c, Ds, d

c = NCSTs Ic , (1)

where Ic, c ∈ L, a, b , is the matrix consisting of the pixel values
of the channel c component of the image, As

c denotes the low-pass
subband, Ds, d

c  denotes the directional subbands corresponding to
the level s and the direction d of the channel c. By taking
advantage of such multi-scale and directional decomposition, in the
proposed method, two feature maps are generated, namely, a local
feature map based on the statistical parameters of the low-pass
coefficients and a global feature map by utilising the directional
subband coefficients. 

3.1 Local saliency map using textural features

In this subsection, the local saliency map generation method used
in this study is described. Our approach to this end is first applying
s level decomposition to each colour channel. Then, the low-pass
subband is divided into blocks of m × m pixels after each
decomposition level, and the local variance of each block is
considered as the local feature map value of the block as given by

Lmaps
c(x, y) = Var As

c(x + i, y + j) i, j = ± 3, ± 2, ± 1, 0 . (2)

Fig. 4a shows the local feature maps for the colour channels
corresponding to the image in Fig. 3 after the sth decomposition
level. It is seen from this figure that the local feature maps
represent various textural details of the image at different levels. 

Fig. 1  Filter bank structure of the NSCT
 

Fig. 2  Block diagram of the proposed saliency detection method
 

Fig. 3  A sample image and the corresponding color channels and ground
(a) Sample Image, (b) Ground truth, (c) Colour channel L, (d) Colour channel a, (e)
Colour channel b

 

2276 IET Image Process., 2018, Vol. 12 Iss. 12, pp. 2275-2282
© The Institution of Engineering and Technology 2018



The local saliency map SLocal is then obtained by linearly
combining the local feature maps Lmaps

c based on the following
two criteria: low entropy and border avoidance, as given by

SLocal = ∑
c, s

ws
cLmaps

c, (3)

where ws
c denotes the weights. The weights are assigned according

to the entropy values of the local feature map and pixel intensity
values around the centre of the map, in such a way that a larger
weight is assigned to a local feature map having a small value of
entropy and large values around the centre of the map. An optimum
feature map is composed of two distinctive parts: the salient region
with large intensity values, and the non-salient region with low
intensity values; thus, it has a small entropy value. In addition, in
saliency detection, it is desirable to find a map with a localised
salient region. Therefore, the spatial information must be
considered in computing the entropy value. To this end, the local
feature map is first filtered by a Gaussian kernel G [32] and its
entropy is computed. It is to be noted that in most of the natural
images the salient region is located close to the image centre rather
than its borders. In view of this, in this work, a border-avoidance
criterion [32] is utilised to represent the strength of the local feature
map around the centre λs

c, as given by

λs
c = ∑

x, y
KN Lmaps

c , (4)

where K is a 2D centred Gaussian mask with its entries having the
maximum value of 1 and its size the same as that of the channel
feature map, and N( . ) is a normalisation function so that the
summation of all the pixel values of Lmaps

c is 1. The weights in (4)
are calculated as

ws
c = λs

c

H Lmaps
c ∗ G

, (5)

where H( . ) denotes the entropy value of the smoothened feature
map.

3.2 Global saliency map using NSCT directional subband
coefficients

In this subsection, the global saliency map generation method used
in this study is described. In order to generate the global feature
map, after each decomposition level, we set the low-pass
coefficients to zero (6) for each colour channel, and apply the
inverse NSCT to the bandpass coefficients as

Gmaps
c = INSCTs As

c = 0, Ds, d
c . (6)

The resulting inverse transform is the global feature maps. The
global feature maps corresponding to the different levels of
decomposition and each channel for the image in Fig. 3 are shown
in Fig. 4b.

The elements of the global feature maps are then used to form
global feature vectors, each corresponding to one pixel of the
image. For each pixel, a global feature vector g(x, y) with a length
of 3S (S being the number of the global feature maps for each
channel) is constructed. If a particular vector is less similar to the
others, the corresponding pixel is different from the other pixels
and thus it can be considered to be more salient. In view of this, the
distribution of the global feature vectors are modelled by a
Gaussian distribution [41] and the global saliency of each pixel is
defined as the likelihood of finding its global feature vector
amongst all the vectors, as (see (7)) where μ is a vector containing
the means of the global feature maps, Σ is a n × n covariance
matrix, T is the transpose operator, and | . | denotes the determinant
of the covariance matrix. Using (7), the global saliency map SGlobal
is computed as

SGlobal(x, y) = log p g(x, y) −1 0.5 . (8)

The local and global saliency maps obtained for the sample image
in Fig. 3 are shown in Figs. 5a and b. It is seen from this figure that

Fig. 4  Feature maps obtained after the first, second, third, and forth levels of NSCT decompositions for the L, a and b colour channels
(a) Local feature maps, (b) Global feature maps
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the global saliency map provides some meaningful information,
especially around the edges of the salient object, which cannot be
detected well only by using the local saliency map. This is due to
the fact that the global saliency map consists of the statistical
relation among the global feature maps. 

An image region is salient if it is different from its surrounding
regions and also it stands out in the entire image. In view of this,
after computing the local and global saliency maps, the pixels
which are both locally and globally salient are considered as the
final salient pixels. Thus, the local and global saliency maps are
merged using a fusion algorithm that involves a Hadamard product
followed by a process that normalises the pixels in this last map in
the range [0,1]. The propose of the fusion algorithm is to give
prominence to the pixels that have large values both in the local
and global saliency maps, whereas to assign small values to pixels
that have small values in either of the local and global maps or in
both. The fused map SM is given by

SM = Nr SLocal ∘ SGlobal , (9)

where Nr( . ) represents the normalisation process of the pixels of
the associated map in the range [0,1] and ∘ denotes the Hadamard
matrix product. The fused map obtained is shown in Fig. 5c.

3.3 Image saliency map abstraction

It is known that a salient object detection technique aims at
detecting the most distinctive regions or objects, rather than
individual pixels [42]. In view of this, the saliency map is further
abstracted into perceptually meaningful regions. More specifically,
the input image is segmented into k superpixels using simple linear
iterative clustering (SLIC) algorithm [43], and the saliency value of
each superpixel, is replaced by the average of the saliency values
of all the pixels belonging to that superpixel. Fig. 5d shows the
saliency map averaged over superpixel for the sample image in
Fig. 3. The saliency map abstraction is implemented using the
optimisation technique of [26] in which the saliency values of
superpixels are used as the foreground weights. In this optimisation
problem, the cost function given by

∑
i = 1

k
w f iSi

2 + ∑
i = 1

k
wbi Si − 1 2 + ∑

i, j
wsi j Si − S j

2, (10)

where Si is the optimised saliency value of the superpixel i, and
w f i, wbi, and wsi j denote the foreground, background and
smoothness weights, respectively, are minimised. The cost function
contains three terms corresponding to the pixels in the foreground
and background, and the smoothness of the pixels within the two

regions. The foreground term tries to assign the saliency value of 1
to the superpixels with a larger value in the saliency map. On the
other hand, the background term aims at assigning a saliency value
of 0 to the superpixels with a strong boundary connectivity.
Boundary connectivity is measured in terms of the spatial distance
and the CIELAB colour distance between a superpixel and the
superpixels located around the image boundary. The smoothness
term tries to assign the same saliency values to the superpixels
within the foreground region or the background region that are
spatially close to each other.

Since in most of the images, image boundary pixels belong to
the background, the degree of contrast of a pixel from the boundary
pixels, provides a measure of its belonging to the salient region.
Therefore, we generate a boundary contrast map by computing
each pixel's distance to the mean colour and covariance matrix of
the boundary pixels. The abstracted saliency map and the boundary
contrast map are then pixel-wise added.

The saliency maps are finally refined employing the post-
processing algorithm used in [29]. First, to smooth the saliency
map while keeping the details of object boundaries, a
morphological smoothing step composed of a reconstruction-by-
dilation operation followed by a reconstruction-by-erosion [44] is
employed. The contrast between the salient and non-salient regions
is then enhanced using a sigmoid function.

Fig. 5e shows the saliency map after the abstraction for the
sample image in Fig. 3. It is seen from this figure that the salient
region is detected more precisely and more uniformly after the
abstraction.

4 Experimental results
In order to evaluate the performance of the proposed saliency
detection method, several experiments are conducted on five
datasets of images, namely, MSRA-1000 [45] (1000 images),
MSRA-10K [28] (10,000 images), HKU-IS [13] (4447 images),
PASCAL-S [46] (850 images), and DUT-OMRON [25] (5172
images) datasets. The image is decomposed into four scales and
four directional subbands in each scale by using NSCT. The block
size in local feature extraction is set to 7.

To compare the results with the ground truth, the grey level
saliency maps S are converted to binary maps Sb using two
different thresholds, fixed and adaptive. In case of a fixed
threshold, all possible thresholds in the range [0, 255] are applied
to the saliency maps and different binary maps are generated and
compared to the ground truth. Next, the adaptive image-dependent
threshold is applied to the grey level saliency maps to obtain the
binary maps. This threshold is set as twice the mean of the saliency
values of the saliency map as in [45]

Tadp = 2
L × W ∑

x
∑

y
S(x, y), (11)

where L and W are the number of rows and columns in the saliency
map.

There exist different evaluation metrics for quantitative
comparison. In this work, since we use datasets with accurate
object masks, we need to measure whether the salient objects can
be detected as a whole. Saliency detection can be regarded as the
binary classification of salient and non-salient regions. In such a
problem, precision (also known as positive predictive value) is the
fraction of the retrieved instances that are relevant, while recall
(also known as sensitivity) is the fraction of relevant instances that
are retrieved. The performance of the proposed method is
evaluated based on the metrics precision, recall, and F-measure as
defined as

p g(x, y) = 1
2π n |Σ|

exp −1
2 g(x, y) − μ TΣ−1 g(x, y) − μ , (7)

Fig. 5  Maps obtained after applying the different steps of the proposed
method
(a) Local map, (b) Global saliency maps, (c) Map obtained by fusion of local and
global saliency maps, (d) Saliency map averaged over superpixels, (e) Saliency map
after abstraction
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P =
∑x ∑y Sb(x, y)GT(x, y)

∑x ∑y Sb(x, y) ,

R =
∑x ∑y Sb(x, y)GT(x, y)

∑x ∑y GT(x, y) ,

F = 1 + ξ PR
ξP + R ,

(12)

where Sb(x, y) is the saliency map, GT(x, y) is the binary ground
truth and ξ = 0.3 is a parameter to specify the relative importance
of P and R.

In order to further evaluate the performance of the proposed
method the mean absolute error (MAE) between the binary
saliency maps using the adaptive threshold and the ground truth is
obtained as

MAE = 1
L × W ∑

x
∑

y
Sb(x, y) − GT(x, y) . (13)

The performance of the proposed method is compared to six
existing schemes that have been originally proposed for salient

object detection, namely, saliency filters (SF) [24], manifold
ranking (MR) [25], saliency optimisation (SO) [26], region-based
contrast (RC) [28], minimum barrier distance (MBD+) [27], and
minimum spanning tree (MST) [29]. The saliency maps obtained
using the proposed method as well as that of the other methods for
two test images from each of the datasets are shown in Fig. 6. It
can be seen from this figure that the saliency maps obtained by the
proposed method are more similar to the ground truth as compared
to that provided by the other methods. 

Figs. 7–11 depict the average precision-recall curves obtained
by applying the proposed saliency detection method and the other
methods to the images in the MSRA-1000, MSRA-10K, HKU-IS,
PASCAL-S, and DUT-OMRON datasets when the threshold is
fixed. It is seen from this figure that the proposed method generally
outperforms all the other methods in terms of precision-recall
performance when applied to the images in MSRA, MSRA10 K,
DUT-OMRON, and HKU-IS datasets. For images in the PASCAL-
S dataset, the MBD+ method provides generally a better
performance, while the proposed method still outperforms the other
methods except for MBD+. 

The average precision, recall, and F-measure values obtained
using the proposed method with the adaptive threshold as well as

Fig. 6  Saliency maps obtained by applying the proposed method and the other methods on two images from MSRA-1000, MSRA-10K, HKU-IS, PASCAL-S,
and DUT-OMRON datasets
(a) Original image, (b) Ground truth, (c) SF [24], (d) MR [25], (e) SO [26], (f) RC [28], (g) MBD+ [27], (h) MST [29], (i) Proposed method
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that of the other methods are calculated and given in Tables 1–5. It
is seen from these tables that the proposed method provides the
largest values of precision and F-measure for all the datasets except
for PASCAL-S, where its F-measure value is lower by 1.24% in
comparison with that of the best value provided by MBD+. The
recall values provided by the proposed method are the largest for
MSRA-1000 and MSRA-10K datasets and competitive to the
largest values for the other three datasets. 

The MAE values obtained using the proposed method as well as
that of the other existing methods are also presented in Tables 1–5.
It is seen from these tables that the proposed method yields the
smallest MAE values when applied to images in the MSRA,
MSRA-10K, HKU-IS, and DUT-OMRON datasets. For images in
the PASCAL-S dataset, MBD+ is the leading method while the
proposed method provides MAE value that is 0.31% larger than
that provided by MBD+ for this dataset. Thus, overall the proposed
scheme provides the best performance and the lowest MAE values
for most of the datasets on which the various schemes have
experimented.

The proposed method is implemented in MATLAB on an Intel
Core i7 3.4 GHz personal computer with 16 GB RAM. We have
obtained the average processing time of the proposed method to be
3.9, 4.1, 4.0, 3.8s, and 3.8 s per image for images in the

Fig. 7  Precision-recall curves obtained by applying the proposed saliency
detection method and the other methods, when the threshold is fixed for
images in the MSRA-1000 dataset

 

Fig. 8  Precision-recall curves obtained by applying the proposed saliency
detection method and the other methods, when the threshold is fixed for
images in the MSRA-10K dataset

 

Fig. 9  Precision-recall curves obtained by applying the proposed saliency
detection method and the other methods, when the threshold is fixed for
images in the HKU-IS dataset

 

Fig. 10  Precision-recall curves obtained by applying the proposed
saliency detection method and the other methods, when the threshold is
fixed for images in the PASCAL-S dataset

 

Fig. 11  Precision-recall curves obtained by applying the proposed
saliency detection method and the other methods, when the threshold is
fixed for images in the DUT-OMRON dataset
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MSRA-1000, MSRA-10K, HKU-IS, PASCAL-S, and DUT-
OMRON datasets, respectively.

5 Conclusion
In this study, a new salient region detection method has been
proposed using multi-scale and directional selectivity properties of
the NSCT. The local features have been extracted from the local
variations of the low-pass coefficients whereas the global features
have been obtained based on the distribution of the directional
subband coefficients. The final saliency map has been obtained by
combining the local and global features and shown to efficiently

represent the pixels that are locally and globally distinctive. In
addition, the structure and boundary of the image objects have been
preserved by abstracting the saliency maps into meaningful image
regions. The proposed method has been compared with a number
of existing methods on various datasets. The results have shown
that the performance of the proposed method is generally superior
to that of the other methods by providing the higher precision,
recall, and F-measure values and lower MAE values.
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Table 2 Precision, recall, F-measure and MAE values
obtained by applying the proposed method and the other
methods on images in MSRA-10K dataset
Method Precision Recall F-measure MAE
proposed 0.9005 0.7921 0.8729 0.0718
MST 0.8798 0.7299 0.8400 0.0893
MBD+ 0.8630 0.7885 0.8446 0.0828
RC 0.8568 0.7751 0.8365 0.0845
SO 0.8711 0.7883 0.8505 0.0775
MR 0.8856 0.7342 0.8454 0.0835
SF 0.8159 0.5562 0.7365 0.1322
The numerical values indicating the best performance are shown in bold.

 

Table 3 Precision, recall, F-measure and MAE values
obtained by applying the proposed method and the other
methods on images in HKU-IS dataset
Method Precision Recall F-measure MAE
proposed 0.7429 0.7112 0.7354 0.1117
MST 0.7127 0.7085 0.7117 0.1216
MBD+ 0.6779 0.7628 0.6957 0.1235
RC 0.6865 0.7168 0.6933 0.1233
SO 0.7028 0.7109 0.7046 0.1168
MR 0.7209 0.6267 0.6967 0.1238
SF 0.6366 0.4218 0.5697 0.1618
The numerical values indicating the best performance are shown in bold.

 

Table 4 Precision, recall, F-measure and MAE values
obtained by applying the proposed method and the other
methods on images in PASCAL-S dataset
Method Precision Recall F-measure MAE
proposed 0.7717 0.5294 0.6976 0.1872
MST 0.7675 0.5553 0.7053 0.1858
MBD+ 0.7617 0.5789 0.7100 0.1842
RC 0.7306 0.5180 0.6674 0.2000
SO 0.7510 0.5484 0.6920 0.1895
MR 0.7643 0.5178 0.6886 0.1868
SF 0.6390 0.3017 0.5080 0.2442
The numerical values indicating the best performance are shown in bold.

 

Table 5 Precision, recall, F-measure and MAE values
obtained by applying the proposed method and the other
methods on images in DUT-OMRON dataset
Method Precision Recall F-measure MAE
proposed 0.5807 0.7218 0.6082 0.1218
MST 0.5477 0.6952 0.5759 0.1435
MBD+ 0.5181 0.7507 0.5580 0.1449
RC 0.5147 0.6484 0.5404 0.1463
SO 0.5282 0.7160 0.5619 0.1345
MR 0.5520 0.6230 0.5670 0.1314
SF 0.4798 0.4529 0.4733 0.1537
The numerical values indicating the best performance are shown in bold.
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