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ABSTRACT

In this work, we consider the problem of electroencephalography
(EEG) signal classification for motor imagery brain-computer inter-
faces. The goal is to identify the pattern of the brain activity using
a robust method for pre-processing, processing, and classification
of the EEG signals. To this end, a new graph-based framework is
proposed to reduce the dimensionality of the data by taking into ac-
count not only the geometrical structure of the channels/electrodes,
but also the correlation between the EEG signals. The most signifi-
cant feature vectors required for EEG signals classification are adap-
tively selected through spectral decomposition of the data using the
graph Laplacian matrix. The tangent space mapping method is then
applied to bring the captured data into Euclidean space. In order to
classify the dimensionally-reduced EEG signals, the linear support
vector machine algorithm is employed. Experiments are conducted
on five different subjects consisting of right hand and right foot mo-
tor imagery actions. The results show that the proposed method can
provide higher classification accuracy as compared to the other ex-
isting methods that we tested.

Index Terms— Brain-computer interfaces, Euclidean space,
principal component analysis, tangent space mapping, graph signal
processing.

1. INTRODUCTION

Brain activity recording has been a trending research field result-
ing in broad range of technological developments, from commercial
electroencephalogram (EEG) headsets to rehabilitation robots [1]
helping paralyzed patients move their muscles by merely thinking
about the movement. Motor imagery (MI) [2, 3] is the mental ex-
ecution of a movement without any real movement or peripheral
(muscle) activation. The variation in brain activity is quantified from
Electrophysiological recording such as EEG during the MI task. Pa-
tients receive visual or kinesthetic feedback in order to promote the
brain response to the MI task. For an efficient and patient-friendly
neuro-rehabilitation with Brain-Computer Interfaces (BCIs) [4–6], it
is crucial to establish highly accurate technologies for the interpreta-
tion of brain activities [7]. A BCI system is a real-time communica-
tion system designed to provide users with a mean of communicating
commands independent of the connectivity between brain’s normal
output channels and peripheral nerves and muscles [12]. Among
several non-invasive methods of tracking and recording brain wave
patterns, EEG has been widely used to capture brainwaves, i.e., the
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electric field generated by the central nervous system. This popu-
larity is due to EEG’s simplicity, inexpensiveness, and high tempo-
ral resolution [9]. It is known that the EEG is capable of detecting
changes in brain’s electrical activities on a millisecond-level, which
is one of the few non-invasive available techniques with such a high
temporal resolution.

On the other hand, unprocessed EEG signals are known to have
a poor spatial resolution owing to volume conduction [10]. Since
analyzing spatial features of the activities is decisive in several sit-
uations, a multichannel measurement of EEG, where electrodes are
installed at various locations on a human head, has been widely
used. A rather blurred image of the brain activity often results
from multichannel EEG signals, because of low signal-to-noise ratio
(SNR) [11]. EEG signals are produced by excitement of millions
of neurons near each electrode. Consequently, the signal recorded
at the electrodes that are located near each other are similar [13].
In view of this, various methods have been employed to reduce the
dimensionality of the EEG signals. These include, for instance,
principal component analysis (PCA), Wiener filtering, common
spatial patterns (CSP), and independent component analysis (ICA)
based techniques, to name a few. These techniques are based on
decomposing the raw EEG data into spatial patterns and maximizing
the variance between the resulting populations [21]. In [23], PCA
has been applied to reduce the dimensionality based only on the
observations values. A dimensionality reduction technique for EEG
data has been proposed in [7] by describing the geometric structure
of the graph formed by the electrodes and spatially filtering the data
with this static graph of EEG signals. In [8], an iterative method has
been proposed for electrode selection in BCI experiments using the
Riemannian distance between spatial covariance matrices.

Recently, graph signal processing (GSP) [16–18,22,26] has pro-
vided a new framework for representing model relations among data
samples. For data-oriented applications, a weighted graph can be
identified to capture similarities within data samples. For instance,
an image may be represented by associating image pixels with graph
nodes [19]. The corresponding graph can be analyzed using newly-
defined GSP techniques [16]. In brain imaging, it is now possible
to non-invasively infer the anatomical connectivity of distinct func-
tional regions of the cerebral cortex, and this connectivity may be
represented by a weighted graph with the vertices corresponding to
the functional regions of interest [18].

In view of this, in this work, we propose a new graph-based
classification method for motor imagery brain computer interface,
referred to as the GC-BCI. The proposed GC-BCI framework is re-
alized by using a novel dimensionality reduction technique which
takes into account not only the geometrical structure of the elec-
trode channels, but also the correlation coefficients obtained from
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the EEG signals. Accordingly, the graph Fourier transform is ob-
tained as a spectral decomposition of the graph which is later applied
to the EEG signals for dimensionality reduction purpose. A tangent
space mapping technique is employed to project data from the Rie-
mannian to the Euclidean domain. The PCA method is applied for
selecting the most significant features for classification purpose. Fi-
nally, the linear support vector machine is used to solve a two-class
classification problem.

The paper is organized as follows. Section 2 formulates the
problem and presents the proposed GC-BCI framework. Simulation
results are provided in Section 3. Finally, Section 4 concludes the
paper.

2. THE PROPOSED GC-BCI FRAMEWORK

Throughout the paper, the following notation is used: non-bold let-
ter x denotes a scalar variable, lowercase bold letter x represents a
vector, and capital bold letter X denotes a matrix. The real domain
is represented by R. The transpose of a matrixX is denoted byXT .

We consider supervised learning from EEG signals based on the
available set of EEG epochs (trials) denoted by Xi ∈ RNch×Nt , for
(1 ≤ i ≤ NTrial), where NTrial is the total number of trials used
for processing; Nch is the number of EEG channels (electrodes),
and; Nt is the number of time samples collected from each elec-
trode in one trial. The training dataset is denoted by {(Xi, li)}, for
(1 ≤ i ≤ NTrial), where li represents the label corresponding to the
ith trial, e.g., li could be “right foot” or “right hand”. Parameters
rTR and rTS are the number of eigenvectors required dimensionality
reduction process of training and test sets, respectively. For vector
Xi, the sample covariance matrix is defined as

Ci =
1

Nt − 1

(
Xi − µi

)(
Xi − µi

)T
, (1)

where µi is the column-wise mean of Xi. The proposed GC-BCI
framework consists of the following main tasks: (i) Pre-processing;
(ii) Dimensionality reduction; (iii) Mapping to tangent space; (iv)
Pre-classification; and (v) Classification. Below and in each sub-
section, the aforementioned tasks are described in details.

2.1. Pre-Processing

Before processing EEG signals for classifying MI tasks, a pre-
processing step is typically required. At this stage, initially the
power line interference is removed by applying a notch filter. Then,
bandpass filtering is applied to extract specific frequency contents
of the signal. This step is then followed by downsampling. The
signal used for processing is extracted from specific period of each
trial time interval. This step is conventionally done by selecting
a predefined time interval after a visual cue and selecting of one
sample value out of n samples.

In order to take into consideration most of subject’s response to
each stimulus, we propose the use of other methods for data smooth-
ing prior to the downsampling step, namely, simple averaging (SA),
simple moving average (SMA), weighted moving average (WMA)
and moving median (MM). More specifically, unlike [7], instead of
randomly choosing one value, i.e., random selection (RS) within the
time interval between two consecutive visual cues, we compute the
average values using SA, SMA and WMA, or the median value us-
ing MM. For all the methods, the window size is set to 10 samples at
a time. In order to investigate the effectiveness of the proposed data
smoothening methods, we obtain the reconstruction error resulted
from each method after reconstructing the signal.

Table 1. Average reconstruction error obtained using various data
smoothening methods for training datasets.

FF: rTR = 41 EV: 80% PRD: 2%

AA
RS 4.32 0.90 69
SA 4.21 0.87 68
SMA 4.21 0.86 68
WMA 4.08 0.83 67
MM 4.33 0.91 69

AW
RS 3.39 0.68 59
SA 3.27 0.66 57
SMA 3.27 0.65 57
WMA 3.12 0.62 55
MM 3.39 0.69 59

AL
RS 3.63 0.68 58
SA 3.51 0.66 57
SMA 3.50 0.63 57
WMA 3.37 0.62 55
MM 3.62 0.69 58

AY
RS 4.20 0.68 64
SA 4.06 0.65 63
SMA 4.06 0.65 63
WMA 3.90 0.62 62
MM 3.19 0.69 64

AV
RS 4.39 0.83 67
SA 4.34 0.81 66
SMA 4.34 0.81 66
WMA 3.27 0.79 65
MM 3.41 0.85 67

Table 1 lists the reconstruction error obtained using training
datasets of different subjects. The signal reconstruction is performed
using a fixed number of features (FF), percentage root-mean-square
difference (PRD) [24] and Explained Variance (EV) [25]. For the
FF method, similar to [7], we consider 41 principal components
for dimension reduction, for EV method, a 80% cut-off variance
explained by the eigenvalues are considered and the corresponding
PRD value is obtained, and in the last column of the Table 1, we
compute the number of eigenvectors required for a 2% reconstruc-
tion error according to the PRD method. It is seen from this table that
WMA provides lower reconstruction error when smoothening the
EEG signals. Henceforth, we employ this filter in the pre-processing
step of our proposed method. In the next subsection, the proposed
graph-based dimensionality reduction method is presented.

2.2. Graph-based Dimensionality Reduction

Graph signal processing is an emerging field that offers a frame-
work for applying classical signal processing to signals defined on
graphs [16]. A weighted graph is a tripletG = (V,E,K) consisting
of a finite set V of vertices (electrode channels) and a finite set E of
edges with the corresponding weights [kpq]n×n ∈ K. The weights
kpq can be defined as a function of proximity between vertices (elec-
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trodes) p and q, as given by

KPG = exp

(
−D(p, q)2

2σ2
d

)
, (2)

where p and q are the electrode positions, and D(p, q) denotes the
distance between the two electrodes. In this work, in order to take
into account the dependencies of the data captured at each electrode,
we propose a new weight matrix which is a function of both the
electrode proximity and correlation coefficients obtained from the
EEG signals.

KVPG = exp

(
−D(p, q)2

2σ2
d

)
. exp

(
− (1− ‖ρ(p, q)‖)2

2σ2
ρ

)
, (3)

where σd and σρ specify the amount of exponential decay rate, and

ρ(p, q) =
cpq√
cppcqq

, (4)

obtained using the elements of the covariance matrix C, given in
(1). Accordingly, the degree matrix Di is defined using the weight
matrix as

Di = diag

{∑
q

k(1, q), ...,
∑
q

k(n, q)

}
. (5)

The graph Laplacian matrix is derived fromK and plays an im-
portant role in describing the underlying structure of the graph sig-
nal. The graph Laplacian and its normalized version are defined as
L = Di−K andLnormal = I−Di−1/2KDi−1/2, where I is the
identity matrix. Spectral graph theory studies the graph properties in
terms of eigenvalues and eigenvectors associated with the Laplacian
matrix of the graph. The set of eigenvectors of Lnormal constitute
the basis function for the underlying signal defined on graph, and its
eigenvalues are known as the corresponding graph frequencies. The
eigen decomposition of the real and symmetric normalized Lapla-
cian is given by

Lnormal =
∑
i

λiuiu
T
i , (6)

where {λi}i=1,...,n is the set of eigenvalues and {ui} the set of
orthogonal eigenvectors used for dimension reduction.

Let U contain the L’s first r eigenvectors corresponding to the
first r eigenvalues of L sorted in ascending order. The proposed
dimensionality reduction technique based on graph spectral theory
employes matrixU to represent the EEG signals with lower number
of features Fr as given by

Fr = UT
r X. (7)

It should be noted that the first r eigenvectors correspond to the
first r low-frequency basis functions in graph spectral domain. It
should be noted that r can be adaptively determined for different
subjects using the PRD method.

The dimension reduction step is followed by mapping the data
from the existing manifold to the Euclidean space. To this end, tan-
gent space mapping method is employed as a bridge operation to
enable us to treat the data transferred to Euclidean space as vectors.
This mapping method is discussed in the next subsection.

Table 2. Classification accuracy performance for predicting two
classes and the corresponding standard deviation (std), obtained us-
ing the proposed graph-based dimensionality reduction methods,
namely, PG and VPG.

Subject AA (168 Train+ 112 Test)

PRD<2.5% PRD<4.15%
rTR=rTS=60 rTR=41, rTS=43

VPG PG VPG PG
82.90± 1.23 80.99± 1.64 76.29± 1.61 74.38± 2.14

Subject AL (224 Train+ 56 Test)

PRD<2% PRD<3.5%
rTR=59, rTS=56 rTR=41, rTS=39

VPG PG VPG PG
97.73± 0.30 97.62± 0.23 97.62± 0.27 97.38± 0.31

Subject AW (56 Train+ 224 Test)

PRD<2% PRD<3.3%
rTR=rTS=58 rTR=rTS=41

VPG PG VPG PG
92.58± 2.82 91.30± 2.75 93.70± 2.21 90.83± 3.14

Subject AV (84 Train+ 196 Test)

PRD<2% PRD<4.29%
rTR=rTS=66 rTR=41, rTS=42

VPG PG VPG PG
67.79± 2.97 66.87± 2.69 66.99± 2.83 64.21± 3.32

Subject AY (28 Train+ 252 Test)

PRD<2% PRD<4%
rTR=rTS=66 rTR=41, rTS=38

VPG PG VPG PG
83.14± 5.76 82.68± 5.67 80.29± 4.64 84.32±4.61

2.3. Tangent Space Mapping

It is known that the sample covariance matrices belong to the Rie-
mannian manifold of the symmetric and positive definite matrices.
However, several significant and commonly used state-of-the-art
methods of machine learning, and specifically, classification tech-
niques, are mostly designed to be applied to datasets in the Euclidean
space. In view of this, we employ the tangent space mapping tech-
nique [20] to project data to Euclidean space as vectors.

Let a Riemannian manifold S(n) be a space of n×n symmetric
positive definite matrices given by S(n) =

{
S ∈M(n),ST = S

}
,

whereM(n) is the space of all square real matrices. The set of all
the matrices is denoted as C(n) =

{
C ∈ S(n),uTCu > 0

}
,

which is not Euclidean. Tangent space mapping provides a Eu-
clidean tangent space, TQC(n) at the point Q, which approximates
the aforementioned Riemannian manifold through the following
steps:

- Compute the set of sample covariance matrices for each trial
as given in (1).

- Compute the mean Riemannian distance as

C̄ =
1

NTrial

NTrial∑
i=1

Ci. (8)
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Table 3. Performance comparison of the proposed graph-based method in two-class classification problem with that provided by [7] and [8].
PG VPG [7] [8]

PRD: rTR = 41 PRD: 2% PRD: rTR = 41 PRD 2% rTR = 41 rTR = 10

AA 74.38± 2.14 80.99± 1.64 76.29± 1.61 82.90± 1.23 81.43± 10.9 74.1

AL 97.38± 0.31 97.62± 0.23 97.62± 0.27 97.37± 0.30 97.50± 2.98 98.2

AW 90.83± 3.14 91.30± 2.75 93.70± 2.21 92.58± 2.82 98.57± 0.79 77.7

AV 64.21± 3.32 66.87± 2.69 66.99± 2.83 65.79± 2.97 69.29± 5.56 59.2

AY 84.32± 4.61 68.82± 5.67 80.29± 4.64 83.14± 5.76 93.93± 4.30 80.6

Average 82.22± 2.70 81.12± 2.60 82.98± 2.31 84.35± 2.69 88.14± 4.90 78

- Compute the map si fromC to TQC(n) as

si = Upper
(

log
(
C̄

−1
2 CiC̄

−1
2

))
, (9)

where Upper is used to weigh the upper triangular half of a matrix
and vectorize it. In particular, it assigns 1 as the weight for main
diagonal and

√
2 for off-diagonal entries. The resulting feature vec-

tors are further trimmed and the most relevant ones are selected for
classification purpose. This pre-classification step is presented in the
next subsection.

2.4. Pre-classification

It is known that the high dimensional features may lead to poor clas-
sification performance. This is due to the fact that large number of
irrelevant features not only degrades the generalization of the model,
but also imposes computational cost. In view of this and in order to
determine the most significant feature vectors of si in the tangent
space mapping process, which are maximally related to the desired
classes, we use a PCA-based feature selection method. To this end,
similar to [7], the first 10 principal components are selected and fed
into the classifier as its input. In addition, for PRD = 2%, eigenvec-
tors are adaptively selected for each subject. It should be noted that
using the PRD method, one can adaptively compact feature vectors
for a better classification result.

2.5. Classification

In order to classify the selected feature vectors as representative of
right hand or right foot MIs, we employ the linear support vector
machine (SVM) algorithm. The SVM uses training feature vectors
to learn a decision boundary that separates these two classes by pro-
jecting data into a higher dimensional space using a kernel function.
Once the decision boundary is learned, the SVM determines the class
membership of a newly-observed feature vector according to the side
of boundary that the vector falls.

3. RESULTS

The proposed method is benchmarked on the dataset IVa from the
BCI competition III taken from http://www.bbci.de/competition/iii/.
The EEG positioning is based on 10 − 20 standard system. The
dataset is composed of EEG recordings of 118 electrodes. The ex-
periment is a classical cue-based MI paradigm in which each of 5
subjects, namely, AA, AL, AV, AW, and AY, perform 280 trials of
right hand and right foot MIs. In the pre-processing step, the EEG

signals are bandpass filtered in the frequency band [8 − 30] Hz, in-
cluding alpha and beta bands, by a 5th order Butterworth filter. The
time interval is restricted to the segment located from 0.5s to 4s after
the cue. The WMA filter is then applied to smoothen the data.

In order to obtain the most significant features for each subject,
we propose the use of PRD to adaptively determine the required
number of eigenvectors from which data can be reconstructed with
a predefined error. The corresponding size of datasets for different
subjects are given in Table 2.

Table 2 gives the classification accuracy and its corresponding
standard deviation averaged over 400 runs, obtained using the pro-
posed method using physical graph (PG) and value-physical graph
(VPG). It is seen from this table that proposed method using VPG
outperforms its PG counterpart by almost 10%. This is due to the
fact that the VPG is built using the electrode channel proximity (PG
case) as well as the correlation coefficients of the EEG signals.

We now compare the performance of the proposed GC-BCI
method to that obtained from the other existing methods, in terms
of the classification accuracy. Table 3 gives the comparison results
of the proposed method using VPG and PG and that provided by [7]
and [8], when constant or adaptive number of features are selected.
It is seen from this table that the proposed method provides higher
classification accuracy for various subjects as compared to those
yielded by [7] and [8]. In addition, the standard deviation of the
classification accuracy obtained using the proposed method is lower
than that provided by [7].

4. CONCLUSION

In this paper, we have proposed a new dimensionality reduction
technique for classifying EEG signals obtained from motor imagery
brain-computer interface systems. The proposed GC-BCI method
has been established by leveraging the recent advances in the field of
graph signal processing. The proposed method is composed of an ef-
ficient graph-based dimensionality reduction technique followed by
tangent space mapping of the EEG signals to the Euclidean space
and a pre-classification step using the PCA-based feature selection
method. Experiments have been conducted on a set of EEG signals
obtained from the BCI competition. The results have shown that
the proposed method produces encouraging results providing high
recognition accuracy for two-class classification.

As future works, the obtained results will be further improved
by employing graph-based smoothening filters and a more accurate
manifold mapping. The proposed method will also be examined for
a multi-class classification problem.
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