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Abstract—Cyber-physical systems have recently emerged in sev-
eral practical engineering applications where security and privacy
are of paramount importance. This motivated the paper and a
recent surge of interest in development of innovative and novel
anomaly and intrusion detection technologies. This paper pro-
poses a novel distributed blind intrusion detection framework by
modeling sensor measurements as the target graph-signal and uti-
lizing the statistical properties of the graph-signal for intrusion
detection. To fully take into account the underlying network struc-
ture, the graph similarity matrix is constructed using both the
data measured by the sensors and sensors’ proximity resulting in a
data-adaptive and structure-aware monitoring solution. In the pro-
posed supervised detection framework, the magnitude of the cap-
tured data is modeled by Gaussian Markov random field and the
corresponding precision matrix is estimated by learning a graph
Laplacian matrix from sensor measurements adaptively. The pro-
posed intrusion detection methodology is designed based on a mod-
ified Bayesian likelihood ratio test and the closed-form expressions
are derived for the test statistic. Finally, temporal analysis of the
network behavior is established by computing the Bhattacharyya
distance between the measurement distributions at the consecutive
time instants. Experiments are conducted to evaluate the perfor-
mance of the proposed method and to compare it with that of
the state-of-the-art methods. The results show that the proposed
intrusion detection framework provides a detection performance
superior to those provided by the other existing schemes.

Index Terms—Cyber-physical systems (CPSs), distributed sen-
sor network, distributed signal processing, intrusion detection, sta-
tistical distance measures.

I. INTRODUCTION

CYBER-PHYSICAL Systems (CPSs) [1]–[5] are inte-
grations of control, communication and computation
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technologies which are employed to monitor and manage physi-
cal infrastructures. Recent advancements in communication and
sensor technologies have paved the way for deployment of a
large number of sensor nodes in CPSs, resulting in an excep-
tional growth in practical implementations and opportunistic
applications of such systems. The rapid growth of CPSs and
the fact that their applications are typically safety critical, have
increased a recent surge of interest in security issues of CPSs
[2]–[10]. Potential cyber and physical attacks by adversaries
may lead to a variety of severe consequences in the societies
including, but not limited to, customer information leakage,
extensive damages to the economy, destruction of infrastruc-
tures, and endangering human lives. This makes identification
and prevention of new cyber attacks of significant practical
importance.

In particular, the focus of this paper is on sensor network
intrusions which are irregular and distinctive changes in the
data captured by the sensor nodes. Authentic activities such
as transient changes in the temperature vapor detection by the
smoke detector in the air flow, and illegitimate activities such
as, injecting viruses and worms into the power grid are two
examples of such intrusions. Nowadays, a sensor network in-
corporated in CPSs play an important role in managing and
advancements of critical social and economic infrastructures.
It is known that network intrusion detection constitutes an in-
dispensable part of the network security and will become more
vital in the future [11]–[14]. Today’s network intrusion detection
schemes have evolved to highly sophisticated levels, involving
advanced signal processing techniques including but not lim-
ited to principal component analysis, time series analysis, and
wavelets among other methodologies. The signature and non-
signature based detectors are the most commonly used detectors
for network anomaly detection. In the signature-based detec-
tion, anomaly can be detected by a correlation detector through
matching the known signatures to the empirical data [15], while
in the non-signature based methods signal analysis approaches
are taken into consideration without requiring any prior knowl-
edge about the anomalies such as the principal component anal-
ysis (PCA) based approaches [16]–[18].

Recently, there has been a surge of interest in devising new
signal processing methodologies to cope with challenges of the
“Big-Data Era”. It is observed that classical signal processing
solutions are typically incapable of properly handling big-data
problems. Recent advances in graph signal processing (GSP)
provides an opportunity to revisit traditional signal processing
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solutions and extend their applicability to emerging problems
with large data sets. The GSP has provided a new framework
for representing model relations among data samples [19], [20].
In data-oriented applications, the similarities between data sam-
ples measured by the sensors can be represented by a weighted
graph.

In this paper, inspired by the recent advances in graph signal
processing, a blind intrusion detection framework is proposed
using statistical properties of the target graph signal. To this end,
the network is supposed to be composed of a number of dis-
tributed sensors having spatial dependencies with irregular data
measurements as signals on nodes of a weighted graph. It is as-
sumed that the sensor placement is fixed with varying measure-
ments over time. The graph affinity matrix is constructed where
edges reflect both the similarities between signals and close-
ness of the sensors. In a supervised scenario, the magnitude of
the measured data is assumed to be random variables distributed
with a Gaussian Markov random field (GMRF) distribution hav-
ing finite mean and precision matrices. A new statistical-based
intrusion detection method is proposed by employing a Bayesian
log-likelihood ratio test. The precision matrix of the model is
estimated by learning a graph Laplacian matrix from the empir-
ical data and used in the following computations of the intrusion
detection. The resulting design provides a superior performance
to other intrusion detection methods.

To summarize, the main contributions of our work can be
summarized as follows:

1) The graph affinity matrix used in the proposed scheme is
constructed based on both the sensors measured data and
the proximity of the sensors. In this way, the proposed
method differs from other existing methods by not only
being data-adaptive but also fully taking into account the
underlying network structure.

2) The proposed scheme develops a blind statistical-based
intrusion detection method. The GMRF is used as an
underlying probabilistic model for the graph signals in
the context of detecting any deviation from the nor-
mal behavior of the network. In other words, the graph
signals are treated as random variables with depen-
dencies across sensor measurements and sensor phys-
ical placements. This assumption on the distribution
of the graph signals has been thoroughly investigated
in [42]. The detection scheme is then realized by us-
ing a hypothesis test based on the log-likelihood ratio
criterion. Closed-form expression for the test statistic is
derived.

3) The proposed scheme establishes a temporal analysis of
the network behavior by computing the Bhattacharyya
distance between the measurement distributions at con-
secutive time instants.

The remainder of the paper is organized as follows: Section II
provides a brief review on the related works. Section III presents
the graph construction, a model based on the GMRF and
a parameter estimation method for the precision matrix. In
Section IV, the proposed graph-based intrusion detection
method is presented. Section V includes the experimental re-
sults and finally Section VI concludes the paper.

II. RELATED WORKS

In this section, we provide a brief overview of the recent state-
of-the-art research works in the field of intrusion detection. We
would like to point out that various types of anomalies have been
introduced/considered in the literature in wide range of appli-
cations where usually each individual study only focuses on a
subset of these cases. Consequently, direct comparison between
different methods is not straightforward and is beyond the scope
of this paper. In general, anomaly detection methodologies can
be classified into a number of main categories which will be
reviewed below.

In signal analysis approaches, PCA, a commonly used method
for dimension reduction, can be employed as an effective tech-
nique to detect network anomalies by projecting the empirical
data onto the principal axis and decomposing the subspace into
normal and abnormal subspaces by setting a certain thresh-
old [15]. The data projection on each axis is sequentially com-
pared with a predefined threshold in order to identify the two
subspaces. In addition, the PCA-based techniques have been
used for detecting anomalies caused by the feature distribu-
tion diffusion [21]. In such cases, the PCA has been applied
to a feature entropy matrix which is a metric for capturing the
dispersal of the feature distributions [22]–[24]. In [16], a PCA-
based intrusion detection scheme has been proposed to discern
normal and abnormal data. However, since the corresponding
principal components provide no locality information, the PCA-
based techniques are not optimal for the intrusion detection in
distributed applications in CPSs consisting of several dispersed
sensors scattered across the network.

A second category of anomaly detection methodologies
is model-based mechanisms where the network anomaly
is identified using change detection algorithms [25], [26].
This is realized by assuming a model, e.g., sliding window
averaging and exponential smoothing, for normal behavior of
the sensors according to the record of measured data. In this
case, anomaly is identified when a substantial deviation from
the model happens in the current empirical data. However,
the change detection techniques are not scalable to large-scale
sensor measurements collected across the network for anomaly
detection in CPSs [27]. Third category classified here is the
wavelet-based approaches. In the algorithms belonging to
this category the network anomaly detection is performed
by analyzing the time-frequency characterization of the
signal [28]. The wavelet analysis decomposes the measured
data into a number of frequency bands including the low and
high frequencies. Anomaly may be detected when the local
variance of the frequency bands exceeds a certain threshold,
indicating an unpredictable change in the network behavior.

In contrary to the above categories, anomalies can be auto-
matically detected by unsupervised learning approaches based
on clustering which can be performed in a top-down or bottom-
up manner [21]. The latter merges smaller clusters into larger
ones while the former divides the subspace hierarchically. It
should be noted that irrespective of the method employed, a
twofold criteria needs to be satisfied; minimizing the intra-
cluster variations and maximizing the inter-cluster variations.
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Other methodologies were developed based on the knowledge
that anomaly may impose dispersal or concentration of feature
distributions. In this regard, multi-way subspace methods have
been used to enable anomaly detection across multiple features
simultaneously by utilizing the sample entropy [15]. Anomalies
can be detected by comparing the sample entropy with a thresh-
old, determined by a predefined false alarm rate. In [31], entropy
and conditional entropy have been used to provide data parti-
tioning for intrusion detection. In [22], histograms of features
have been obtained to detect the anomaly by using different
clustered features. In [23], an anomaly detection scheme has
been proposed by comparing the data measured by the sensors
with an assumed distribution using the maximum entropy cri-
terion. In [30], a clustering-based method has been proposed
for anomaly detection in wireless sensor networks. Data point
belonging to dense clusters have been considered to be in the
normal profile, while data samples in other clusters including
those with either small or sparse clusters have been regarded as
anomalies. However, these methods are highly dependent to the
distribution of the data. In other words, the performance of such
methods is only acceptable when the data samples with normal
profile are densely clustered.

It is known that GSP framework has recently provided a
paradigm to unify the similarity metrics and design adaptive
filtering algorithms by flexibly defining the measure of simi-
larity, especially for high-dimensional data [20]. In addition, a
probabilistic framework for signals defined on graphs has been
always of interest. For instance, graphical models such as hid-
den Markov models have been used in signal processing and
bioinformatics. Despite recent developments of GSP solutions,
their applications to anomaly and intrusion detection are still
in their infancy limited to few research works. For instance,
in [31], an intrusion detection technique has been proposed by
using a time-series graph for which principal eigenvectors of the
affinity matrix are extracted and employed to detect intrusions.
In [32], a method for detecting graph anomalies has been pro-
posed based on the eigenvectors of the graph similarity matrix.
In [33], using the graph regularity, a detection method has been
developed for graph anomalies. In [34], the graph wavelet has
been used for network analysis. A web graph similarity has been
proposed for anomaly detection in [35]. In [36], an event de-
tection method has been proposed in wireless sensor networks
in which a graphical model has been used to capture the spatial
dependency of the neighboring sensors and enhance the detec-
tion accuracy. However, the detection scheme is not blind and
needs the knowledge of the true event indicator value. In addi-
tion, there is no temporal analysis on the sensor measurements
and choice of parameters are adhoc. For instance, the nearest
neighbor sensors are limited to maximum four sensors and the
number of event-regions and their corresponding sizes depends
on how well the training data represents the true field. In [37], a
spectral interpretation of the graph filtering and PCA has been
proposed for intrusion detection. In [37], a new subspace for
given data samples has been derived to distinguish the data with
normal and abnormal profiles by using projection. However, the
performance of this method highly depends on the choice of the
subspace employed.

While a variety of approaches exist for detecting intrusion in
CPSs, they are mostly incapable of distinguishing between the
spatial and temporal anomalies. In addition, they fall short in
providing a unified method to take into consideration both the
sensor proximity information and its measured data. In view of
this and in order to achieve higher intrusion detection rate, in
this work, a new supervised graph-based statistical approach for
intrusion detection in cyber physical systems is proposed. The
graph similarity matrix is constructed using a Gaussian kernel by
taking into account both the sensors geodesic distances and their
measured data. A new blind intrusion detection framework is
designed based on the GMRF model for the graph signals using
the log-likelihood ratio criterion. Closed-form expression for
the test statistic is derived and temporal analysis of the network
behavior is established.

III. PROPOSED GRAPH-BASED MODELING FRAMEWORK

Throughout the paper, the following notations are used:
Capital non-bold letter X denotes a scalar variable, lowercase
bold letter x represents a vector, and capital bold letter X
denotes a matrix. A script letter (e.g., A) denotes a set. In
this paper, we consider a diagnostic solution where N sensors
are employed and scattered throughout the system to monitor
the operating condition of the underlying CPS. A distributed
processing architecture is considered including a fusion center
(FC) where for real-time anomaly/intrusion detection, each
sensor node communicates its local observations to the FC
which then implements the diagnostic solution on the collected
set of measurements. In addition, the sensors are assumed to
be static (as is the case in several applications of CPSs) and
the location of sensor l, for (1 ≤ l ≤ N ), denoted by [Xl, Yl]
is known in advance. For real-time monitoring of the CPSs,
sensor measurements are collected periodically over time and
are typically related to the system state of the CPS defined as
the state-vector x, which characterizes the current operating
condition of the CPS. The measurement corresponding to
sensor l, for (1 ≤ l ≤ N ), is defined as follows

Sl(k) = hl(x(k)) + νl(k), (1)

where k denotes time index, and νl(k) represents the uncer-
tainties in the sensor model. A general observation model hl(·)
is considered relating the measurements of sensor l to the
system state. Based on the measurements of the N randomly
distributed sensors (nodes), we construct instantaneous graph
signals at each time. In other words, each sensor measures data
Sl(k) at time instant k = 1, . . . ,K, resulting in the following
instantaneous graph signal

(k) = [S1(k), . . . , SN (k)], (2)

which is a vector of size N of graph signals in one observation.
In the following sections we formulate the proposed monitoring
model as the basis for the proposed graph-based intrusion
detection. In what follows, first we construct the graph
representing the N constituent sensors utilized for monitoring
the CPS, and investigate its properties. Then we formulate the
graph model followed by its parameter estimation methodology
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before describing the proposed graph-based intrusion detection
framework in the next section.

A. Graph Construction

Emerging field of graph signal processing offers a framework
for incorporating classical signal processing approaches into
large data sets by representing the signals on graphs [19]. To
exploit the similarity in the sensor measurements, the N con-
sidered sensors are treated as the vertices of a weighted graph
G = (V, E ,W ) consisting of a finite set V of vertices and a
finite set E of edges with the corresponding weights wpq ∈ W .
The weight wpq , for (1 ≤ p, q ≤ N ), is a measure of similarity
between vertices (sensors) p and q. A sensor q is considered to
be similar to sensor p, if it is within the first κ-closest sensors to
p, i.e., κ-nearest neighbors set of sensors. The similarity weight
wpq is defined by the standard Gaussian kernel as follows

wpq = exp

(
−
(

D2
pq

2σ2
pq

+
D2

g

2σ2
g

))
, (3)

where

Dpq =
√

(Xp − Xq )2 + (Yp − Yq )2 , (4)

is the geometrical distance, D2
g = (Sp − Sq )2 is the signal value

distance, σpq and σg control the level of similarity achieved
by (3), Sp and Sq are the graph-signals on nodes p and q. Having
the graph similarity matrix W , the corresponding real-valued
and symmetric graph Laplacian matrix is defined as [19]

L = D − W , (5)

where

D = diag

{∑
q

w1q , . . . ,
∑

q

wNq

}
. (6)

The graph Laplacian matrix plays an important role in describ-
ing the underlying structure of the graph signal. In graph spectral
domain, the graph properties are studied in terms of eigenvalues
and eigenvectors associated with the graph Laplacian matrix
(collective set of measurements at each time instant at the FC).
The set of eigenvectors of L is considered as basis functions
of the underlying signal defined on the graph, and its eigen-
values are known as the corresponding graph frequencies. The
eigendecomposition of the Laplacian is given by [38], [39],

L =
∑

i

λiuiu
T
i , (7)

where superscript T denotes transpose operator, λ = {λi}
i=1,...,N is the set of eigenvalues and U = {ui}i=1,...,N is the
set of orthogonal eigenvectors associated with the Laplacian
matrix. Set U constitutes the basis functions for the underlying
signal defined on the graph, and λ is known as the corresponding
graph frequencies. The graph signal s(k) is decomposed into the
graph Fourier domain components denoted by s̃(k) at each time
instant using the eigenvectors ui(k), for (1 ≤ i ≤ N ), of the cor-
responding Laplacian matrix at that time L(k) as given by [52],

[53]

s̃(k) = U(k)T s(k), (8)

where U(k) is a matrix composed of the eigenvectors of L(k). A
graph signal s(k) is regarded as smooth with respect to the graph
G if most of its energy is concentrated in the low frequencies,
i.e., most s̃(k) coefficients are zero for large values of λ’s. In
other words, a smooth signal s(k) gives rise to a smaller value of
graph smoothness regularizer sT (k)L(k)s(k), as given by [51]

sT (k)L(k)s(k) =
N∑

i=1

λi

(
ui(k)T s(k)

)2
, (9)

The smoothness regularizer sT (k)L(k)s(k) will be further used
for sparse graph learning discussed later in Section III-C.

B. Graph Model

In this paper, our main goal is to develop a blind intrusion
detection framework. In a blind detection scheme, the receiver
has no access to the graph construction information, and thus,
the graph Laplacian matrix (or correspondingly, the graph sim-
ilarity matrix containing the weights) for the graph modeling is
not known. In view of this, we consider a prior distribution for
the graph-signal. More specifically, the observation s(k) is as-
sumed to be instances of a GMRF having the probability density
function as follows [40]

f(s(k)) = (2π)
−N
2 |Q(k)| 1

2

× exp
(−1

2
(s(k) − m(k))T Q(k)(s(k) − m(k))

)
(10)

where m(k) is the mean vector and Q(k) is a symmetric preci-
sion matrix. The precision matrix Q(k) is assumed to be related
to the graph similarity matrix, given in (3), by the following
expression [42]

Qṕq́ =
{∑

q́ wṕq́ ṕ = q́

−wṕq́ ṕ �= q́
(11)

In view of this, there exist a consistent relationship between the
precision matrix Q(k) and the graph Laplacian matrix L(k).
In the graph-based model, a node is connected to its κ-closest
neighbors; thus, the resulting precision matrix is sparse [41].

C. Parameter Estimation

In this section, we describe the learning approach that is
used in this paper for estimating the parameters of the GMRF
distribution. One naive approach to this end is to simply use the
sample mean and covariance of the observation vector computed
based on the previous measurements stacked over time. The
sample (N × N) covariance matrix C = {Cij} is obtained as

Cij =
1

N − 1

N∑
o=1

(
Soi − S̄i

)T (
So j − S̄j

)
, (12)

where sensor observations at each time instant k = 1, . . . ,K are
used, Soi denotes the o-th sensor measurement of sensor i, and
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S̄o denotes the mean of sensors’ measurements at each time in-
stant o. Accordingly, the precision matrix Q in a GMRF model
can be computed using a covariance matrix C for N samples
as Q = C−1 . However, the estimated C may not be robust re-
sulting in a precision matrix Q that deviates significantly from
the true precision matrix [42]. In order to robustly estimate Q,
there exist several approaches based on learning a sparse pre-
cision matrix [43]–[48]. In this paper, we follow the approach
presented in [46], in which a sparse graph learning approach
has been employed. More specifically, the GMRF model with
precision matrix Q has a corresponding graphical representa-
tion given in (11) in such a way that the weight wpq connects
nodes p and q in the graph with the edge value −Lpq . When
there is no edge connecting nodes p and q, Lpq = 0. The graph
Laplacian of the corresponding graph is in fact the precision
matrix Q. In view of this and in order to estimate Q, the signal
s(k) is projected into the graph Fourier basis and the following
optimization problem is solved [46]

min︸︷︷︸
L(k),ŝ(k)

||s(k) − ŝ(k)||2F + ζtr(ŝ(k)T L(k)ŝ(k)) + γ||L(k)||2F ,

(13)
where ζ and γ are the regularization parameters, || · ||F de-
notes the Frobenious norm. In addition Lij = Lji ≤ 0, for i �= j
and tr(L) = M , where tr(·) denotes the trace operator and
L ∈ �M ×M . The first term on the right hand side (RHS) of
(13) is the fidelity term insuring the closeness of the estimate
to the original signal, while the second term is the smoothness
term defined as follows

ŝ(k)T L(k)ŝ(k) =
N∑

p=1

wpp ŝ2
p

+
N∑

p=1

N∑
q :q �=p

wpq
(
ŝp − ŝq

)2
, (14)

and used as a measure of graph signal smoothness. The last term
on the RHS of (13) is a measure of cardinality and promotes
sparsity. Equation (13) can be solved for the matrix L(k) to be
a valid graph Laplacian matrix by utilizing an alternating opti-
mization approach [45]. It is to be noted that there exist other
approaches to estimate the graph Laplacian L(k) given observa-
tions s(k) as the graph signals. For instance, in [43], the inverse
covariance matrix has been estimated using the graphical lasso
as an extension of the l1-regularization in the sparse coding.
In [44], a graph template with edges in the two different direc-
tions has been developed and used for estimation of two weight
parameters for edges of the two different directions based on
the computed structure tensor.

IV. GRAPH-BASED INTRUSION DETECTION

In this section, we introduce the proposed intrusion detection
framework which is designed based on the proposed graph-
based modeling discussed in Section III. In order to detect
any deviation from the normal behavior of the network, in this
work, we propose a detection method based on the graph signal
statistics. To this end, the Bayesian log-likelihood ratio test is

employed to detect any possible intrusion in each time instant.
This method can be reduced to a binary hypothesis test con-
sisting of testing an alternative hypothesis H1 against a null
hypothesis H0 and can be mathematically formulated based on
the statistical properties of the graph signals. The hypotheses
H1 and H0 represent as to whether the signal suffers from a
significant change by the anomaly a or not, respectively, and
can be stated as

H1 : y(k) = s(k) + ξa(k)

H0 : y(k) = s(k) (15)

As discussed in Section III, the data is assumed to follow a
statistical distribution, namely, the GMRF model. The decision
rule is defined using the likelihood ratio Λ(y(k)) as follows

Λ(y(k)) =
Pr(y(k)|H1)
Pr(y(k)|H0)

=
Pr(y(k) − ξa(k);Q(k),m(k))

Pr(y(k);Q(k),m(k))

H1
>
<
H0

η, (16)

where η is the threshold. The PDFs Pr(y(k)|H1) and
Pr(y(k)|H0) follow the GMRF distribution. After taking the
logarithm from (16), the log-likelihood ratio is given by

l(y(k)) = ln

(
Pr(y(k)|H1)
Pr(y(k)|H0)

)

= ln

(
Pr(y(k) − ξa(k);Q(k),m(k))

Pr(y(k);Q(k),m(k))

) H1
>
<
H0

τ,

(17)

where l(y(k)) � ln[Λ(y(k))] is the log-likelihood ratio and τ =
ln(η). The detection statistic is then obtained by inserting (10)
into (17) as

l(y(k)) = −1
2
(y(k) − ξa(k))T Q(k)(y(k) − ξa(k))

+
1
2
y(k)T Q(k)y(k). (18)

The detector is supposed to choose between H1 and H0 based
on the received observations. The detection is performed by
comparing l(y(k)) with τ , determined by maximizing the prob-
ability of detection PDet for a predefined probability of false
alarm PFa [54]. It is noted that PDet is the probability that the
detector decides the preposition H1 to be true when an intrusion
occurs and that PFa is the probability that it decides H1 to be
true when, in fact, there is no intrusion. By considering all terms
of the summation to be independent, the log-likelihood ratio is
clearly a superposition of N random variables with finite mean
and variance. Thus, according to the central limit theorem for
large value of N [55], the log-likelihood ratio follows an ap-
proximately Gaussian distribution under each hypothesis. The
mean and variance of each of the Gaussian distributions can
be estimated from the empirical data and are given by (μ0 , σ

2
0 )
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and (μ1 , σ
2
1 ) for H0 and H1 , respectively. Once the mean and

variance of the log-likelihood ratio under both hypotheses are
known, for a particular value of τ , the probabilities of false
alarm and detection can be estimated as follows [55]

PFa = Q

(
τ − μ0

σ0

)

PDet = Q

(
τ − μ1

σ1

)
, (19)

where Q(x) = 1√
2π

∫∞
x e−z 2 /2dz. The decision threshold is

obtained using the Neyman-Pearson criterion and can be
expressed as

τ = σ0Q
−1(PFa) + μ0 . (20)

The performance of the proposed statistical detector can be
analyzed experimentally by relating the probability of detection
and the probability of false alarm as given by the following
expression

PDet = Q

(
σ0

σ1
Q−1(PFa) − μ1 − μ0

σ1

)
. (21)

Resulting curves are called the receiver operating characteris-
tics (ROC). In order to evaluate the performance of the proposed
intrusion detection method, we resort to a Monte Carlo simu-
lations to numerically find the log-likelihood ratio l(y(k)) by
generating random anomalies. To this end, 1000 randomly gen-
erated anomaly sequences are employed. For each run, l(y(k))
is estimated using (18) for both the hypotheses. The experimen-
tal mean and variance of l(y(k)) are then estimated. Thus, when
the means and variances of the log-likelihood ratio under both
hypotheses for a particular value of τ are known, the probabil-
ities of false alarm and detection can be estimated using (19).
It should be noted that to increase the reliability of detection,
PDet needs to be kept at a high level for a predefined rate of false
alarm.

It should be noted that there exist two kinds of anomaly detec-
tion algorithms; (i) supervised anomaly detection, where some
prior statistical information on normal and anomalous signals
are known, and (ii) unsupervised anomaly detection, where no
knowledge about the normal and anomalous signals is required.
Since our proposed approach belongs to the category of super-
vised methods, a discrete probability distribution is assumed for
variable a with equiprobable values in {−1,+1}. The corre-
sponding distribution is given by

Pr(A = a) = f(a) =

⎧⎨
⎩

0.5 if a = +1

0.5 if a = −1
(22)

It is to be noted that different types of anomalies can be analyzed
using (18), irrespective of making any probabilistic assumption
on the behavior of the anomalies. If we do not assume any proba-
bilistic behavior for the anomalies, i.e., manually annotating the
anomalous points, our proposed detector can be experimentally
evaluated based on the Monte Carlo simulations by finding the
log-likelihood ratio l(y(k)), for randomly generated anomaly
sequences. In our proposed approach, we assume a probability

distribution for the anomalies to analytically derive the mean and
variance of the log-likelihood ratio under the hypotheses H0 and
H1 . For this purpose, let l(y(k)) = − 1

2 g1(y(k)) + 1
2 g2(y(k)),

where

g1(y(k)) = (y(k) − ξa(k))T Q(k)(y(k) − ξa(k))

g2(y(k)) = y(k)T Q(k)y(k). (23)

The mean and variance of the log-likelihood ratio under H0 can
be obtained as [54]

μ0 = μ(l(y(k)));H0) = (μg1 + μg2 ) , (24)

and

σ2
0 = σ2(l(y(k)));H0)

= (σ2
g1

+ σ2
g2

− 2μg1 g2 + 2μg1 μg2 ). (25)

From (22), a(k) takes values of +1 and −1 with equal proba-
bility. Hence, μg1 and μg2 can be obtained as

μg1 =
1
2
((y(k) − ξ)T Q(k)(y(k) − ξ)

+ (y(k) + ξ)T Q(k)(y(k) + ξ)), (26)

and

μg2 = y(k)T Q(k)y(k). (27)

And hence μ0 can be calculated using (24). In order to find the
variance of the log-likelihood ratio, given by (25), the various
terms are found and given below

σ2
g1

= E[g2
1 ] − μ2

g1

=
(

1
2
(y(k) − ξ)T Q(k)(y(k) − ξ)

− 1
2
(y(k) + ξ)T Q(k)(y(k) + ξ)

)2

, (28)

σ2
g2

= E[g2
2 ] − μ2

g2
= 0, (29)

μg1 g2 =
1
2
(
(y(k) − ξ)T Q(k)(y(k) − ξ)

) (
y(k)T Q(k)y(k)

)
+

1
2
(
(y(k) + ξ)T Q(k)(y(k) + ξ)

) (
y(k)T Q(k)y(k)

)
,

(30)

and

μg1 μg2 =
1
2
(
y(k)T Q(k)y(k)

)
× ((y(k)−ξ)T Q(k)(y(k)−ξ)+(y(k)+ξ)T Q(k)(y(k)+ξ)

)
.

(31)

Thus, the theoretical mean and variance of the log likelihood
ratio under H0 can be shown to be
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μ0 = −1
4
(y(k) − ξ)T Q(k)(y(k) − ξ)

− 1
4
(y(k) + ξ)T Q(k)(y(k) + ξ)

+
1
2
(y(k)T Q(k)y(k)), (32)

and

σ2
0 =

1
16

((y(k) − ξ)T Q(k)(y(k) − ξ)

+ (y(k) + ξ)T Q(k)(y(k) + ξ))2 . (33)

In a similar manner, the mean and variance of the log-likelihood
ratio under H1 are obtained. It can be also shown that μ1 = −μ0
and σ2

1 = σ2
0 . It is observed from (32) and (33) that the test

statistic is dependent on the power of the intrusion. Thus, the
theoretical ROC curves can be obtained using (21) for different
values of ξ.

To detect the anomalies over time, we propose the use of
Bhattacharyya distance [49] between the measurement distribu-
tions at consecutive time instants. The Bhattacharyya distance
(BD) measures the similarity of two discrete or continuous prob-
ability distribution and is closely related to the Bhattacharyya
coefficient (BC), also known as Hellinger affinity [50], which
measures the amount of overlap between two statistical sam-
ples. Specifically, the BD for Gaussian distributions is typically
used for evaluating class separability in classification problems
and feature extraction in pattern recognition. In general, feature
extraction can be considered as the process of transforming high
dimensional data into a low dimensional feature space based on
an optimization criterion. In other words, reducing dimension-
ality without a serious loss of class separability is the key to
feature extraction. Dimensionality reduction and identification
of relevant features are, therefore, important for the classification
accuracy. In discriminant analysis, the Bayes error is the best
criterion to evaluate feature sets, and posterior functions are the
ideal features. Unfortunately, the Bayes error is too complex to
be used as an analytical tool for extracting features. The BC/BD
is directly related to the classification error and provides an up-
per bound on the Bayes error, therefore, it has been widely used
in pattern recognition as an effective measure of the separability
of two distributions.

The BC between two probability distributions, f1(s) and
f2(s), is denoted by ρB(f1 , f2) and is defined as follows

ρB(f1 , f2) =
∫ √

f1(s)f2(s)ds =
∫

f2(s)

√
f1(s)
f2(s)

ds.

(34)
Another closely related measure is referred to as the Bhat-
tacharyya distance (BD), denoted by dB(f1(s), f2(s)), which is
defined based on the BC as follows

dB(f1(s), f2(s)) = − ln ρB(f1(s), f2(s)). (35)

Below, we consider the distance measure obtained as follows

dB (fk , fk+1) = −ln

(∫ √
fk (s)fk+1(s)

)
ds, (36)

The Bhattacharyya distance is computed for two consecutive
time instants by inserting (10) into (36), as given by

dB (fk , fk+1) =
1
8

(mk − mk+1)
T

× Qk + Qk+1

2
(mk − mk+1)

+
1
2

ln
Qk +Qk + 1

2√|Qk ||Qk+1 |
, (37)

where mk and mk+1 are the mean vectors and, Qk and Qk+1
are the precision matrices of the fk and fk+1 , respectively. In
addition and in view of the fact that the Bhattacharyya distance
in (37) measures the distance between two exponential prob-
ability distributions with estimated precision matrices Lk and
Lk+1 , we can directly compute the distance between the two
estimated Laplacian matrices. To this end, the Frobenious norm
of the difference matrix is obtained as follows

Dist (Lk ,Lk+1) = ‖Lk − Lk+1‖F . (38)

The Dist in (38) is computationally less expensive without com-
promising the detection performance. The performance of both
the distances will be investigated in Section V.

V. EXPERIMENTAL RESULTS

Experiments are conducted to investigate the performance
of the proposed graph-based intrusion detection method and to
compare its performance with those of the other existing works.
In the experiments, time-series temperature data are generated
in the intervals of 1 hour for 30 days. We consider 64 randomly
distributed sensors collecting univariate data corresponding to
the room temperature at 64 locations for 720 time instants. Fig. 1
illustrates the configuration of the sensor placement and some
of the sensor measurements normalized by the maximum read-
ing. Fig. 2 shows a sample sensor measurement values over
time when the sensor measures the temperature during 30 days.
At each time instant, the graph similarity matrix is constructed
for the entire network and the corresponding graph Laplacian
matrix is obtained. The graph Laplacian is then utilized in the
detection scheme in the context of the GMRF precision matrix
as discussed in Section III-B. It should be noted that since we
estimate the graph Laplacian matrix L at each time instant inde-
pendently, no stationarity assumption is needed in our proposed
approach.

In order to obtain the experimental ROC curves, as stated
previously, Monte Carlo simulations are carried out in which
1000 pseudo-random sequences are generated for intrusion and
at every run for a given ξ. Then, experimental values of the mean
and variance of the test statistic conditioned on each hypothe-
sis are computed and the resulting ROC curve, obtained. Fig. 3
depicts the theoretical as well as the experimental ROC curves
in the range 0 ≤ PFa ≤ 10−2 obtained using the proposed in-
trusion detection method. It is seen from this figure that the
experimental ROC curves are very close to the theoretical ones,
thus establishing the validity of the expression derived in (32)
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Fig. 1. Configuration of the sensors placement and their consecutive four normalized measurements.

Fig. 2. Sample temperature sensor measurement in 30 days.

and (33). In view of this result, henceforth we use the theoretical
means and variances.

In order to compare the performance of the proposed de-
tector with that of the PCA-based [16], Clustering-based [30],
GBF [37], local-GLRT [36], in terms of the ROC curves. For
this purpose, we first obtain the ROC curves of the various meth-
ods for a predefined PFa . Fig. 4 shows the ROC curves for the
various intrusion detection methods. It is seen from this figure

Fig. 3. Theoretical (dashed) and experimental (solid) ROC curves for the
proposed intrusion detection method.

that the proposed intrusion detection method has a superior per-
formance to other methods, in terms of providing the highest
probability of detection for a given probability of false alarm.
Similar results have been obtained for various values of ξ. It
should be noted that in the PCA-based method, we consider a
robust Mahalanobis distance by replacing the sample covariance
with the minimum covariance determinant. In addition, in the



SADREAZAMI et al.: DISTRIBUTED-GRAPH-BASED STATISTICAL APPROACH FOR INTRUSION DETECTION IN CPSs 145

Fig. 4. ROC curves for various intrusion detection schemes when ξ = 0.5.

TABLE I
AREA UNDER ROC CURVES FOR VARIOUS INTRUSION DETECTION METHODS

AND DIFFERENT VALUES OF ξ

ξ Proposed GBF PCA-based local-GLRT Clustering

0.1 0.9315 0.7832 0.7337 0.7789 0.2573
0.3 0.9645 0.8434 0.7819 0.8260 0.3106
0.5 0.9823 0.8771 0.8382 0.8612 0.3837
0.7 0.9975 0.9124 0.8733 0.9009 0.4583

TABLE II
AVERAGED CPU TIMES (IN SECOND) REQUIRED BY VARIOUS DETECTORS

Proposed GBF PCA-based local-GLRT Clustering

CPU time 5.27 4.62 2.39 6.36 2.88

GBF method θs is set to 0.9 and in the Clustering-based ap-
proach the number of clusters is set to 15. Next, the area under
ROC curve is computed for various schemes. Table I gives the
area under ROC curve for various methods for different values
of ξ, for PFa in

[
0, 10−4

]
. It is seen from this table that the pro-

posed method yields the best performance in that it provides the
largest value of area under ROC curve irrespective of the intru-
sion strength. In order to further investigate the performance of
the proposed intrusion detection scheme, the temporal behavior
of the network with anomalies imposed at different time instants
are analyzed.

To compare the computational complexity of the proposed
method to that of the other methods, we compute the required
CPU time averaged over 50 runs, when the experiments are
implemented in MATLAB on an Intel Core i5 2.8 GHz personal
computer with 4 GB RAM. Table II gives the averaged CPU
times required by the various intrusion detection methods. It is
seen from this table that running time of our algorithm is in par
with GBF, another graph-based approach, while its detection
rate is significantly higher than this method.

To detect the anomalies over time, we incorporate the
proposed Bhattacharyya distance mechanism as derived in

Fig. 5. Bhattacharyya distance values between fk (s) and fk+1 (s).

Fig. 6. Approximating the Bhattacharyya distance using the estimated Lapla-
cian matrices for two consecutive time instants.

Section IV. Fig. 5 shows the Bhattacharyya distance values
between the two consecutive time instants. It is seen from
this figure that the arrival of an unexpected observation over
time is clearly visible at the time instants k = {20, ..., 30} and
k = {70, ..., 80}. Fig. 6 shows the distance between the two
consecutive Laplacian matrices for k = {0, ..., 120}. It can be
seen from this figure that the proposed method is very well
capable of detecting the existence of any deviation from the
normal behavior profile. It should be noted that the intrusions
are generated at the same time instants as mentioned above.

VI. CONCLUSION

In this paper, a new statistical-based intrusion detection
scheme for distributed sensor networks has been proposed. The
proposed method has been realized by constructing a graph
signal from both the sensor measurements and placements, re-
sulting in the corresponding similarity and Laplacian matrices.
The proposed intrusion detector has been designed utilizing
the Gaussian Markov random field distribution based on the
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hypothesis testing and employing the log-likelihood ratio cri-
terion. Closed-form expression for the test statistic has been
derived and validated experimentally. The performance of the
proposed intrusion detection scheme has been evaluated in de-
tail by conducting several experiments. It has been shown that
the proposed intrusion detection scheme provides a performance
significantly superior to that of the other schemes as evidenced
by the higher detection rate values. The temporal behavior of the
proposed intrusion detection scheme has been evaluated by com-
puting both the Bhattacharyya distance and its approximated
version using the graph Laplacian matrices of the consecutive
time instants. It has been shown that the proposed scheme is
very well capable of detecting sensor measurement anomalies
over time.
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