
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 65, NO. 2, FEBRUARY 2018 251

Iterative Graph-Based Filtering for Image
Abstraction and Stylization

Hamidreza Sadreazami, Member, IEEE, Amir Asif, Senior Member, IEEE, and Arash Mohammadi, Member, IEEE

Abstract—In this brief, motivated by the recent advances
in graph signal processing, we address the problem of image
abstraction and stylization. A novel unified graph-based multi-
layer framework is proposed to perform iterative filtering without
requiring any weight updates. The proposed graph-based filter-
ing approach is shown to be superior to other existing methods
due to iteratively using the filtered Laplacian in order to enhance
the smoothened image signal at each layer. In order to render
real images into painterly style ones and create a simple stylized
format from color images, the low-contrast regions of an image
are first smoothened using the proposed iterative graph filters
in either vertex or spectral domains. The abstracted image is
then quantized and sharpened using the proposed iterative high-
pass graph filter. The effectiveness of the graph-based image
stylization method is verified through several experiments. It is
shown that the proposed method can yield significantly improved
visual quality for stylized images as compared to other existing
methods.

Index Terms—Iterative graph filtering, spectral filtering, signal
processing, abstraction, stylization.

I. INTRODUCTION

IN THIS age of big data, we need to revisit traditional
signal processing solutions and extend their applicability to

emerging problems with large data sets. In such applications,
the critical problem is that typically rendering classical signal
processing solutions may be incapable of properly handling
big data problems which are of great engineering importance.
Recently, graph signal processing [1]–[3] has provided a new
framework for representing model relations among data sam-
ples. For data-oriented applications [3], a weighted graph can
be identified to capture similarities between data samples. For
instance, an image may be represented by associating image
pixels with graph nodes. The corresponding graph can be
analyzed using newly-defined signal processing techniques [1].

Leveraging the new framework of graph signal processing,
we address the problem of image stylization, i.e., synthesiz-
ing an artistic cartoon/painterly-like image from a new point
of view. In recent years, stylized images in the computer

Manuscript received December 9, 2016; revised January 29, 2017; accepted
February 12, 2017. Date of publication February 15, 2017; date of current
version January 29, 2018. This work was supported by the Natural Sciences
and Engineering Research Council of Canada through the Create under Grant
466280-2015. This brief was recommended by Associate Editor L.-P. Chau.

The authors are with the Intelligent Signal and Information Processing
Laboratory, Concordia University, Montreal, QC H3G 1M8, Canada
(e-mail: h_sadrea@encs.concordia.ca; amir.asif@encs.concordia.ca;
arashmoh@encs.concordia.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSII.2017.2669866

graphics, artistic works, social networks, and entertainment
have received considerable attention [4]. Image abstraction
is an image processing problem used to modify the contrast
of visually important features in order to stylize and create
cartoon-like effects on images [5]–[7]. In [5], a l0 gradient
minimization method has been proposed for image editing by
optimizing a global function to control the non-zero gradients.
In [6], a scale-aware rolling guidance filter (RGF) has been
proposed for detail smoothening in the context of iterative joint
bilateral filter. In [7], a graph-based structure-preserving filter
has been proposed for smoothening high-contrast details by
constructing a minimum spanning tree between image patches.

Image stylization has a wide range of applications, including
allowing for artistic data-driven simulations of ink, watercolor,
oil paintings and cartoons [8]–[10]. Particularly, a framework
for synthesizing non-photorealistic animatory styles such as
painterly, sketchy, and cartoon-like shadings from real videos
has been proposed in [11]. A line-drawing approach has
been proposed for the purpose of image stylization in [12],
where the Canny edge detector and mean-shift filter have been
successively combined to obtain a cartoon-style image. Data-
driven stylization and abstraction methods for portrait sketch
synthesis have been proposed in [13] by analyzing both the
characteristics of the strokes and the differences between the
shape of the faces and reference images. In [14], an exten-
sion to the difference of Gaussian operator for edge detection
has been proposed. It has been shown in [14] that this new
extension is promising for producing variety of styles such
as pencil-shading, pastel and woodcut. In [15], a direction-
enhancing edge flow field has been proposed for line drawing.
It has been shown in [15] that this technique can preserve edge
localization and offer additional features for creating hand-
painting style images. While a variety of approaches exist for
abstracting images and stylizing them, they fall short in pro-
viding unified multi-layer abstraction and stylization methods
which can be generalizable to large video sequences.

In view of this, in this brief, a new unified multi-layer
framework for parallelized lowpass and highpass filtering is
proposed. The proposed filtering framework is capable of
simultaneously manipulating and enhancing fine details in the
image. Therefore, a preprocessing stage to remove distortions
in the image is not needed leading to significant computa-
tional savings. The proposed methodologies are realized by
applying a sequential filter comprising the detail removal and
sharpening stages. For detail removal, two graph filters one in
the vertex domain and the other one in the spectral domain
are proposed to reduce the contrast in low-contrast regions.
To this end, we make use of the graph Laplacian matrix
obtained from the similarity matrix to enhance the smoothened
output of each layer. In contrast to other multi-scale detail

1549-7747 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:h_sadrea@encs.concordia.ca
mailto:amir.asif@encs.concordia.ca
mailto:arashmoh@encs.concordia.ca
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

252 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 65, NO. 2, FEBRUARY 2018

Fig. 1. Proposed graph-based iterative filtering for image abstraction.

decomposition schemes, the proposed graph-based multi-layer
filtering framework does not require weight updating at each
layer, since the weights are computed once and used in the
following computations. This strategy not only reduces the
computational complexity of the algorithm but also enables
efficient spectral analysis of the filters. To obtain stylistic illus-
trations from color images, the abstracted image is quantized
and contrast in high-contrast regions is increased by iteratively
adding a highpass graph filtered version of the image to its
quantized version. Simulation results evaluate the effectiveness
of the proposed graph-based method in image abstraction and
stylization and include comparisons with other existing works.

II. GRAPH CONSTRUCTION

Graph signal processing is an emerging field that offers a
framework for applying classical signal processing to large
data sets by defining signals on graphs [2]. Let image z be
defined as an intensity function on the vertices V of a weighted
graph G = (V, E, K) consisting of a finite set V of vertices
(image pixels) and a finite set E of edges with the correspond-
ing weights kpq ∈ K, denoting similarity between vertices
(pixels) p and q in the graph. The similarity weights of size
m × m are represented as K = [kpq], where kpq is defined as
follows

kpq = exp

(
−

[
d2

c

2σ 2
c

+ d2
g

2σ 2
g

])
, (1)

where dc =
√

(Lp − Lq)2 + (ap − aq)2 + (bp − bq)2 is the

color distance, dg =
√

(xp − xq)2 + (yp − yq)2 is the geo-
metrical distance, σc and σg control the level of smoothening
achieved by (1), x and y denote the pixel position in the image,
L is an intensity measurement, and finally a and b represent the
color components [16]. The graph Laplacian matrix is derived
from K and plays an important role in describing the under-
lying structure of the graph signal. The graph combinatorial
and normalized Laplacian matrices are defined as L = D − K
and Ł = I − D−1/2KD−1/2 [17], respectively, where I is the
identity matrix and D = diag{∑q k(1, q), . . . ,

∑
q k(m, q)}.

Spectral graph theory studies the graph properties in terms
of eigenvalues and eigenvectors associated with the adjacency
or Laplacian matrices of the graph. Term Ł is a real symmet-
ric matrix, thus is diagonalizable to its eigenbasis as given by
Ł = ∑

i λiuiuT
i , where λ = {λi}i=1,...,m is the set of eigenval-

ues and U = {ui}i=1,...,m the set of orthogonal eigenvectors.
Set U constitutes the basis function for the underlying sig-
nal defined on graph, and λ is known as the corresponding
graph frequencies. The graph Fourier transform z̃ of a signal
z is therefore defined as z̃ = UTz [1]. In the next section, we
present a new multi-layer graph-based filtering approach used
for image abstraction and stylization.

Fig. 2. Spectral response h(λ) of the proposed graph-based filtering in the
spectral domain with different polynomial degrees.

III. IMAGE ABSTRACTION

The proposed image abstraction and stylization methods
are realized by applying a progressive filtering process con-
sisting of smoothening and sharpening filters. The first stage
smoothens the image by utilizing graph-based filters in the
vertex and spectral domains.

A. Vertex Domain Filtering

In order to smoothen an image, in this brief, we propose a
graph-based filtering method to reduce contrast in low-contrast
regions and to eliminate fine structures such as weak edges
and possible noise. For signals defined on graphs, filtering
can be done in both the vertex and spectral domains similar
to the procedure followed in conventional signal processing
methodologies. In the vertex domain, a graph signal z can be
iteratively filtered in a multi-layer manner, as shown in Fig. 1,
using the following expression

zf = I −
(

I − D−1/2KD−1/2
)n+1

z, (2)

where n is the iteration index and zf is the filtered version
of z. With the use of the proposed iterative graph filtering,
the weaker edges are removed while the stronger ones are
preserved. Using the proposed filter in (2), we can obtain
a multi-layer abstracted image by utilizing only the similar-
ity matrix K of the original image. It is to be pointed out
that the proposed data-dependent filtering method iteratively
uses the graph Laplacian matrix to enhance the filtered version
of the signal at each layer, since it contains some of the under-
lying signal structure. Abstracted images are useful in several
applications such as saliency/object detection and retargeting.

B. Spectral Domain Filtering

It is known that the graph spectral domain provides sparse
representation of the graph signals which may be desirable in
many applications [1]. In view of this, we further investigate
the possibility of an alternative to the proposed graph vertex-
domain filter in the graph spectral domain. To this end, the
graph Laplacian matrix is decomposed into its eigenvalues and
eigenvectors and the corresponding spectral filter is designed.
The signal can be filtered in the spectral domain as

z̃f = h(λ)z̃, with z̃ =
∑

i

uiz (3)

SADREAZAMI et al.: ITERATIVE GRAPH-BASED FILTERING FOR IMAGE ABSTRACTION AND STYLIZATION 253

Fig. 3. Proposed iterative graph-based detail removal filtering. Original Margaret image with synthetic noise as well as its abstracted versions using the
vertex domain filter in (2) with various iteration index n values and using the spectral domain filter in (3) and (4) with different polynomial degrees j.

being the projected signal onto the graph Fourier domain and

h(λ) =
∑

0≤i≤j

liλ
i (4)

is the filter spectral response representing the Lagrange inter-
polation polynomial expressed as a function of λ with degree j,
which is an approximated version of h(λ) = (1 + λ2)−1 [18].
The approximated filter spectral response in (4) for a general
case of Laplacian can be derived as∣∣∣∣∣∣h(λ)z̃ −

∑
0≤i≤j

liλ
iz̃

∣∣∣∣∣∣ ≤ ε, (5)

in which ε can be upper-bounded by

max︸︷︷︸
[λmin,λmax]

|ε| ≤ max
∣∣h(j+1)(λ)

∣∣
(j + 1)!

max
∣∣wj+1(λ)

∣∣, (6)

where wj+1(λ) = ∏
i(λ − λi). The filtered signal z̃f in the

spectral domain can be regarded as a linear combination
of the components of the input signal within a j-hop local
neighborhood. For instance, the filter spectral response for
a polynomial of degree j = 2 can be obtained as h(λ) =
I−0.6λ+0.1λ2, knowing that the graph frequencies of the nor-
malized Laplacian matrix Ł are within the interval [0, 2] [1].
This filter leaves the high-contrast edges unaltered, while it
has a strong smoothing effect on more homogeneous regions.
Fig. 2 shows the spectral response of the approximated filters
with different polynomial degrees. It is seen from this figure
that using (4) with j = 5, we can have a good approximation
of h(λ). It should be noted that both the proposed filters in
the vertex and spectral domains can be interchangeably used
for abstracting images. The resulting abstracted image is used
in the next section for stylization purpose.

IV. IMAGE STYLIZATION

The output of the proposed image abstraction method can
be further processed to obtain stylized cartoon/painterly-like
images. For this purpose, we first perform quantization on
the luminance channel of the abstracted image as is given by

ẑf = �(� zf
�

+ 1�), where ẑf and zf are the abstracted image
and its quantized version, respectively, �(.) is the quantiza-
tion step and �.� denotes the floor operator. The quantization
operator can be adaptive and image-dependent. However, in
order to have a unified stylization method, we consider a fixed
quantization step independent of the underlying image.

Sharpening is a process used for boosting images with high
pass filtering, i.e., amplifying high frequency details in images.
Since boosting details in the original image may also result
in noise amplification, one needs to first smoothen the image
and remove the noise and low-contrast details as much as pos-
sible as discussed in Section III-A. In addition to noise, other
high contrast artifacts in color images such as false color arti-
facts should be precluded. To this end, we convert the original
RGB color image to Lab color space since this color space is
uniform and more similar to the human perception. In order
to further reduce the false color artifacts in color channels,
a smaller value of the sharpening parameter γ for the color
channels should be selected. In order to increase contrast in
higher contrast regions, edge detection techniques based on
Canny, Laplacian of Gaussian and difference of Gaussian [14]
detectors have been widely deployed. The resulting edge maps
have been used in the context of a shock filter [19] to high-
light edges with large magnitude. In this brief, in order to boost
the high-contrast regions of the image, we propose the use of
iterative graph filtering as is shown in Fig. 1 and given by

zsh = hsh(L)z = (
I + γ Ln)z = (

I + γ (D − K)n)z, (7)

where zsh is the sharpened version of z and the sharpening
parameter γ controls the level of contrast enhancement in
the output image. The more the value of γ is, the more the
detail enhancement level of the filter increases. The sharp-
ening filter in (7) can be regarded as iteratively adding a
highpass-filtered version of each channel to the abstracted
ones. Correspondingly, the spectral response of the proposed
iterative sharpening filter hsh(λ) obtained using the graph
normalized Laplacian matrix is given by hsh(λ) = (I + γ λn).

V. SIMULATION RESULTS

We conduct experiments on a set of color images to eval-
uate the performance of the proposed image abstraction and

254 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 65, NO. 2, FEBRUARY 2018

Fig. 4. Proposed graph-based image abstraction and stylization method.
(a) Original, (b) abstracted using (2) with n = 3, and (c) stylized images.

stylization method. Due to space constraint, only results from
some of the test images are reported here. The RGB color
images are first converted to the Lab color space. A similarity
matrix K for the color channels is first constructed. In our sim-
ulations, the quantization step � is considered to be constant
and set to 15. The sharpening parameter γ is set to 1.3 for the
luminance and 0.2 for the color channels. We first consider
the image abstraction problem and use the filters in (2) and
(3) to obtain the abstracted images. Fig. 3 illustrates the orig-
inal Margaret image contaminated by an additive Gaussian
noise with noise standard deviation ση = 0.1, as well as its
abstracted version obtained using the proposed iterative graph-
based filters in (2) with different iteration indexes n and, in (5)
with different polynomial degrees j. It is seen from this fig-
ure that the proposed iterative graph filter in both the vertex
and spectral domains are very well capable of smoothening
the image by removing fine details while preserving the high-
contrast edges. It is also observed from this figure that by
increasing n, the image is iteratively filtered. Depending on the
application, one can set n to a specific value. For the proposed
image stylization method, we set n = 3. It is experimentally
found that the spectral domain graph filter in (3) can be well
approximated by a polynomial of degree j = 5. Fig. 4 shows
the original images JFK with inherent noise, Academy and
Margaret with synthetic noise as well as their correspond-
ing abstracted (using (2) with n = 3) and stylized images
obtained using the proposed graph-based filtering method. It
can be seen from this figure that the proposed method pro-
vides cartoon and painterly-like images by taking advantage
of iterative graph-based filtering.

We now compare the proposed filtering output with those
of the l0 gradient minimization approach [5] and RGF [6].
Figs. 5 and 6 show the original Rug and Flower images
as well as their smoothened versions obtained using the
proposed graph-based method and the corresponding ones
yielded by [5] and [6]. It can be seen from these figures
that the proposed iterative graph-based filter can perform

Fig. 5. Image smoothening comparison. (a) Original Rug image and
smoothened versions obtained using (b) [5], (c) [6], and (d) the proposed
method.

Fig. 6. Image smoothening comparison. (a) Original Flower image and
smoothened versions obtained using (b) [5], (c) [6], and (d) the proposed
method.

better smoothening by removing more details as compared
to [5] and [6], resulting in smoothened images with sharper
edges and more resolution contrast. This is clearly noticeable,
especially from the edges highlighted by black arrows and
the surrounding areas. This improvement can be attributed to
iteratively employing the residuals (differences of smoothened
images) in the context of the graph Laplacian matrix used in
the filtering process. Next, we compare the performance of the
proposed image stylization method using graph-based filtering
to those of other existing methods, namely, RGF [6], unsharp
masking, shock filter [19] and difference of Gaussian-based

SADREAZAMI et al.: ITERATIVE GRAPH-BASED FILTERING FOR IMAGE ABSTRACTION AND STYLIZATION 255

Fig. 7. Comparison of stylized JFK image obtained using (a) shock filter,
(b) unsharp masking, (c) difference of Gaussian and (d) the proposed method.

Fig. 8. Comparison of stylized images obtained using the proposed method
(down) and RGF [6] (up).

image stylization [14]. For the case of difference of Gaussian
edge detection, we use our graph-based detail removal method
for image abstraction. Figs. 7 and 8 illustrate the stylized
images obtained using the aforementioned approaches. It can
be observed from Fig. 7 that our proposed image stylization
method is superior to other approaches in terms of providing
cartoon-like images with no horizontal or vertical artifacts and
creates smooth and coherent transitions along line and curved
boundaries. In comparison to the recent algorithm in [6], Fig. 8
corroborates our earlier observations of our image stylization
approach by providing sharper edges and less artifact in the
stylized images.

VI. CONCLUSION

In this brief, we have proposed a novel and efficient
method for image abstraction and stylization. The proposed
method has been developed using a new unified iterative
graph-based filtering framework based on the graph simi-
larity and Laplacian matrices without requiring any weight
updates. The proposed image abstraction method is composed
of iterative filtering for detail removal and region smoothen-
ing followed by the luminance channel quantization to stylize

an image with paint or cartoon-like effects and edge sharpen-
ing. By applying the proposed sequential filter to the original
image, stylization effect has been generated in the output
image. The results have shown that the proposed method
can produce multi-layer abstracted images while retaining
much of the perceptually important information. The improved
performance can be attributed to the use of graph Laplacian to
iteratively enhance the smoothened image. The resulting styl-
ized images are shown to be visually more pleasant than those
produced by the other methods. Among possible applications,
the proposed abstraction method can be utilized for saliency
detection, retargeting and painterly-style video production.

REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irreg-
ular domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98,
May 2013.

[2] A. Sandryhaila and J. M. F. Moura, “Big data analysis with signal pro-
cessing on graphs: Representation and processing of massive data sets
with irregular structure,” IEEE Signal Process. Mag., vol. 31, no. 5,
pp. 80–90, Sep. 2014.

[3] X. Liu, G. Cheung, and X. Wu, “Joint denoising and contrast enhance-
ment of images using graph Laplacian operator,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process., South Brisbane, QLD, Australia,
2015, pp. 2274–2278.

[4] J. E. Kyprianidis, J. Collomosse, T. Wang, and T. Isenberg, “State of
the ‘Art’: A taxonomy of artistic stylization techniques for images and
video,” IEEE Trans. Vis. Comput. Graphics, vol. 19, no. 5, pp. 866–885,
May 2013.

[5] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothening via l0 gradient
minimization,” ACM Trans. Graph., vol. 30, no. 6, 2011, Art. no. 174.

[6] Q. Zhang, L. Xu, and J. Jia, “Rolling guidance filter,” in Proc. Eur. Conf.
Comput. Vis., Zürich, Switzerland, 2014, pp. 815–830.

[7] F. Zhang, L. Dai, S. Xiang, and X. Zhang, “Segment graph based image
filtering: Fast structure-preserving smoothing,” in Proc. IEEE Int. Conf.
Comput. Vis., Santiago, Chile, 2015, pp. 361–369.

[8] O. Klehm, I. Ihrke, H.-P. Seidel, and E. Eisemann, “Property and lighting
manipulations for static volume stylization using a painting metaphor,”
IEEE Trans. Vis. Comput. Graphics, vol. 20, no. 7, pp. 983–995,
Jul. 2014.

[9] S. Yagyu, A. Sakiyama, and Y. Tanaka, “Pyramidal image representa-
tion with deformation: Reformulation of domain transform and filter
designs,” in Proc. IEEE Int. Conf. Image Process., Phoenix, AZ, USA,
2016, pp. 3608–3612.

[10] S. Hao, Y. Guo, R. Hong, and M. Wang, “Scale-aware spatially guided
mapping,” IEEE Multimedia, vol. 23, no. 3, pp. 34–42, Jun./Sep. 2016.

[11] H. Zhao, X. Jin, J. Shen, X. Mao, and J. Feng, “Real-time feature-aware
video abstraction,” Vis. Comput., vol. 24, pp. 727–734, Jul. 2008.

[12] D. DeCarlo and A. Santella, “Stylization and abstraction of pho-
tographs,” ACM Trans. Graph., vol. 21, no. 3, pp. 769–776, 2002.

[13] I. Berger, A. Shamir, M. Mahler, E. Carter, and J. Hodgins, “Style and
abstraction in portrait sketching,” ACM Trans. Graph., vol. 32, no. 4,
pp. 1–12, 2013.

[14] H. Winnemoller, J. E. Kypriandidis, and S. C. Olsen, “XDoG:
An extended difference-of-Gaussians compendium including advanced
image stylization,” Comput. Graph., vol. 36, no. 6, pp. 740–753, 2012.

[15] S. Wang, E. Wu, Y. Liu, X. Liu, and Y. Chen, “Abstract line drawings
from photographs using flow-based filters,” Comput. Graph., vol. 36,
no. 4, pp. 224–231, 2012.

[16] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, “Bilateral filtering:
Theory and applications,” Fund. Trends Comput. Graph. Vis., vol. 4,
no. 1, pp. 1–73, 2009.

[17] P. Milanfar, “A tour of modern image filtering: New insights and meth-
ods, both practical and theoretical,” IEEE Signal Process. Mag., vol. 30,
no. 1, pp. 106–128, Jan. 2013.

[18] A. Gadde, S. K. Narang, and A. Ortega, “Bilateral filter: Graph spectral
interpretation and extensions,” in Proc. IEEE Int. Conf. Image Process.,
Melbourne, VIC, Australia, 2013, pp. 1222–1226.

[19] X. Chen, J. Liu, and R. Wu, “Non-photorealistic rendering for stream-
line stylization using sequential filters,” in Proc. IEEE Int. Conf. Intell.
Human-Mach. Syst. Cybern., Nanchang, China, 2012, pp. 245–248.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

