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Abstract—In the past decade, several schemes for digital image
watermarking have been proposed to protect the copyright of
an image document or to provide proof of ownership in some
identifiable fashion. This paper proposes a novel multiplicative
watermarking scheme in the contourlet domain. The effectiveness
of a watermark detector depends highly on the modeling of
the transform-domain coefficients. In view of this, we first
investigate the modeling of the contourlet coefficients by the
alpha-stable distributions. It is shown that the univariate alpha-
stable distribution fits the empirical data more accurately than
the formerly used distributions, such as the generalized Gaussian
and Laplacian, do. We also show that the bivariate alpha-stable
distribution can capture the across scale dependencies of the
contourlet coefficients. Motivated by the modeling results, a blind
watermark detector in the contourlet domain is designed by
using the univariate and bivariate alpha-stable distributions. It is
shown that the detectors based on both of these distributions
provide higher detection rates than that based on the generalized
Gaussian distribution does. However, a watermark detector
designed based on the alpha-stable distribution with a value of
its parameter « other than 1 or 2 is computationally expensive
because of the lack of a closed-form expression for the distrib-
ution in this case. Therefore, a watermark detector is designed
based on the bivariate Cauchy member of the alpha-stable family
for which « = 1. The resulting design yields a significantly
reduced-complexity detector and provides a performance that
is much superior to that of the GG detector and very close to
that of the detector corresponding to the best-fit alpha-stable
distribution. The robustness of the proposed bivariate Cauchy
detector against various kinds of attacks, such as noise, filtering,
and compression, is studied and shown to be superior to that of
the generalized Gaussian detector.

Index Terms—Digital image watermarking, multiplicative
watermark, contourlet transform, alpha-stable family of
distributions.

I. INTRODUCTION

IGITAL data distribution on the internet has made
researchers to pay special attention to copyright issues.

Manuscript received April 25, 2014; accepted July 3, 2014. Date of publica-
tion July 16, 2014; date of current version September 2, 2014. This work was
supported in part by the Natural Sciences and Engineering Research Council
of Canada and in part by the Regroupement Strategique en Microelectronique
du Quebec. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Stefano Tubaro.

The authors are with the Center for Signal Processing and
Communications, Concordia University, Montreal, QC H3G 1MS,
Canada (e-mail: h_sadrea@encs.concordia.ca; omair@encs.concordia.ca;
swamy @encs.concordia.ca).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TTP.2014.2339633

Digital watermarks have been widely applied to different
media contents such as videos, audios and images for the
purpose of identifying the ownership [1]-[4]. Various water-
marking schemes have been proposed to protect the copyright
information. They may be categorized in many ways such as
the domain in which the watermark is embedded for example
pixel [5], frequency [6]-[12] or hybrid [13], and the method of
embedding, additive [6], [7], [9], [10], [14], [15], multiplica-
tive [11], [12], [16]-[20] or based on quantization [21], [22].
In many applications, the detection of a specific watermark is
sufficient [7]-[11], [17], [18], without it being extracted. The
commonly-used additive and multiplicative embedding rules
are as: additive watermarking ¥ = X +¢ W and multiplicative
watermarking ¥ = X+¢ XW, where X and Y are, respectively,
the original and watermarked data, W is a watermark sequence
and (¢ is a weighting factor that controls the strength of the
watermark. It should be mentioned that by increasing ¢, the
robustness of the watermarking scheme is increased. How-
ever, the extent to which one can increase the watermark
strength depends on the properties of the human visual sys-
tem (HVS) [23]-[25], which guarantees the imperceptibility
of the watermarking scheme. In view of the robustness, the
multiplicative watermarks have been widely used for copyright
protection. Hence, detection of multiplicative watermarks has
received a great deal of attention [11], [12], [20]. Due to
their simplicity, correlation-based detectors have been used for
detecting the watermarks, especially for additive watermarking
schemes [2], [13], [21]. However, it has been shown that these
detectors are not optimal for the detection of multiplicative
watermarks [12].

A watermarking scheme should be robust against any
intentional or unintentional distortion and the authorized user
should be able to detect the watermark. The robustness can
be significantly increased by utilizing the spread spectrum
technique [3], [18], [26] in which the watermark is embedded
in a transformed domain such as the discrete Fourier transform
[2], [8], [11], discrete cosine transform [6], [7], [10], discrete
wavelet transform [15], [21], [22], [24], or the contourlet
transform [24], [27]-[33]. Recently, a number of watermark-
ing schemes have been proposed, wherein the watermark is
embedded into the contourlet coefficients of the image. There
have been several works suggesting that the performance
of the contourlet-domain algorithms is resistant to attacks
than those based on other frequency-domain watermarking
algorithms such as the wavelets [30]-[32]. This is mostly
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due to the spreading property of the contourlet transform in
that if the watermark bits are inserted into specific subbands
(e.g., lowpass or highpass), they will be spread out into all the
subbands when the watermarked image is reconstructed [24].
The most commonly used detector for the frequency domain
watermarking schemes is the correlation detector, which is
optimal only if the data samples follow the Gaussian distri-
bution function [34]. If these data samples are not Gaussian,
optimal or sub-optimal detectors are developed by modeling
the frequency domain coefficients using various PDFs, such
as the Laplacian [22], [35] Student-t [36], and generalized
Gaussian [6], [12], [33], [37], [38]. In view of the fact
that the contourlet coefficients of an image are highly non-
Gaussian [33], [37]-[39], i.e., having large peaks and tails
heavier than that of a Gaussian PDF, a proper distribution
to model the statistics of the contourlet coefficients would
be a heavy-tailed PDF. It has been shown in [33] and [39]
that the generalized Gaussian distribution can model the
contourlet coefficients. Accordingly, a statistical watermark
detector has been proposed in [33] for the contourlet-domain
image watermarking that models the contourlet coefficients
by the GG distribution. The bivariate distributions have been
used for modeling the wavelet transform coefficients in various
image processing applications, particularly in image denois-
ing [40], [41]. Wavelet coefficients of color images have
been modeled by using multivariate power-exponential distri-
bution in [42], which focuses on dependencies between RGB
channels. However, there does not exist any work in image
watermarking for modeling the across-scale dependencies of
the contourlet coefficients using a bivariate distribution.

In this work, we first explore the modeling of the con-
tourlet coefficients by the alpha-stable family of distributions.
Through a comprehensive modeling of actual data, it is shown
that the contourlet-domain subband decomposition of real
images have significant non-Gaussian statistics that are best
described by families of heavy-tailed distributions, such as
the alpha-stable family. It should be pointed out that we
consider both the univariate and bivariate statistical mod-
els to thoroughly investigate the modeling of the contourlet
coefficients. It is shown that the univariate and bivariate
alpha-stable distributions can accurately model the heavy-
tailed properties of the contourlet coefficients both in terms of
the objective measure of Kolmogorov-Smirnov distance and
subjective measure of comparing the histograms of various
distributions. In addition, it is shown that the bivariate alpha-
stable distribution can capture the across scale dependencies
of the contourlet coefficients. Encouraged by the modeling
results, statistical watermark detectors are designed in the
contourlet domain by using both the univariate and bivariate
alpha-stable distributions and their performances are evaluated
numerically by obtaining the receiver operating characteristics.
Since the bivariate Cauchy PDF is a particular case of the
alpha-stable distributions having a closed form expression for
its PDF, we will also study the performance of the detector
using this distribution, since we expect it to have a much lower
computational complexity. The robustness of the proposed
watermarking scheme is then examined when the watermarked
images are attacked by JPEG compression, additive white
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Gaussian noise, salt & pepper noise and median filtering.
Finally, we compare the performance of the proposed detector
with that of the GG detector.

The paper is organized as follows: Sections II presents the
contourlet transform, the alpha-stable distribution and results
on modeling of contourlet coefficients of the test images using
this distribution. In Section III, watermark embedding proce-
dure is discussed and a blind watermark detector constructed.
In Section IV, the performance of the proposed watermarking
detector is examined in terms of the probabilities of detection
and false alarm and then compared to that of the GG detector.

1I. DATA MODELING
A. Contourlet Transform

The contourlet transform, a new image decomposition
scheme proposed in [40], provides an efficient representa-
tion for 2D signals with smooth contours and in this case
outperforms the wavelet transform which fails to recognize
the smoothness of the contour. The contourlet transform has
also the multiscale and time-frequency localization features of
the wavelet transform. In addition it offers a higher degree
of directionality with better sparseness. Further, due to using
iterated filter banks, it is computationally efficient. There are
number of other structures such as the dual-tree complex
wavelet [44], ridgelet [26], [45] and curvelet [46], [47] that
also provide multiscale and directional image representation.
However, the contourlet transform can provide a flexible num-
ber of directions in each subband. In this regard, this transform
is superior to the wavelet and the complex wavelet transforms.
Compared to the curvelet transform, the contourlet transform
is preferred, since it is defined on rectangular grids and offers
a seamless translation to the discrete world [40]. Moreover,
the contourlet transform has a 2D frequency partitioning on
concentric rectangles rather than on concentric circles for the
curvelet, and hence overcome the blocking artifact deficiency
of the curvelet transform.

B. Alpha-Stable Distributions

It is known that the contourlet coefficients of images have
non-Gaussian property and heavy tails. In view of this, an
appropriate distribution to model the statistics of the contourlet
coefficients would be the one having large peaks, and tails
heavier than that of a Gaussian PDF, i.e., a heavy-tailed PDF.
In this section, the alpha-stable statistical model is used to
characterize the contourlet image coefficients. This model is
suitable for describing signals with non-Gaussian statistics
and heavy tails [48]-[50]. The alpha-stable model requires
four parameters for its complete description: a characteristic
exponent a, (0 < a < 2), a skewness parameter § € [—1, 1], a
location parameter 6 € R, and dispersion parameter y > 0. For
one class of the alpha-stable distributions, called the symmetric
alpha-stable (SaS) distribution, f = 0. The univariate zero-
mean SaS distribution with a random variable X ~ SaS(a,y)
is described by its characteristic function

1)

The dispersion parameter y determines the spread of the
distribution around its location parameter J, just as the variance

(Da,y (w) = exp (—V |w|a)
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TABLE I
CHARACTERISTIC EXPONENT OF THE ALPHA-STABLE DISTRIBUTION,
ESTIMATED FROM DIFFERENT CONTOURLET
SUBBAND COEFFICIENTS

Direction [ Scale [ Barbara  Peppers Lena  Baboon  Airplane
1 1.137 1.330 1.270 1.451 0.973
2 I 1.135 1.253 1.100 1.445 0.938
3 1.080 1.270 1.090 1.278 0.877
4 1.206 1.317 1.151 1.255 1.040
1 0.964 1.432 1.316 1.341 0.994
2 1.024 1.336 1.265 1.467 0.903
3 0.848 1.196 1.216 1.312 0.873
4 1.102 1.216 1.037 1.523 0.902
5 I 1.375 1.225 1.059 1.412 1.033
6 1.264 1.217 1.170 1.332 1.137
7 1.209 1.115 1.177 1.314 1.094
8 1.591 1.388 1.240 1.425 1.231

is around the mean in the case of the Gaussian distribution.
The characteristic exponent a is the most important parameter
which determines the shape of the distribution. The smaller the
value of a, the heavier the tail of the distribution. This implies
that random variables following the SaS distribution with
small characteristic exponents are highly impulsive. It should
be noted that there is no closed-form expression for the SaS
distribution except when o = 1 and a = 2, which define the
Cauchy and the Gaussian processes, respectively. Although the
SaS density behaves approximately like a Gaussian density
near the origin, its tail decays at a lower rate [48]. Similar to
the univariate SaS distribution, a zero-mean bivariate SaS is
characterized by its characteristic function given by

\ o + o3 > 2)

Equivalently, the bivariate SaS PDF is obtained as

(Da,y (wh CUZ) = exp <_V

Sa,y (x1,x2)

- ok
 4n? —00 /—ooe

(w1x1+072x2))
doirdwy. (3)

C. Modeling of Contourlet Coefficients Using
Univariate Sao.S

The symmetric alpha-stable family of distributions has
attracted attention in the modeling of heavy-tailed data such
as the transform-domain image coefficients [7], [S1]. In order
to model the contourlet subband coefficients of an image, we
propose the use of SaS distribution. To this end, we estimate
the values of the characteristic exponent, a, for the various
contourlet subbands when the given test image is decomposed
into two pyramidal levels, with eight and four directions,
respectively. In Table I, the results obtained by estimating «
using the maximum likelihood approach [52], [53] for a few of
test images are summarized. It can be seen from this table that
the value of a varies from 0.8 to 1.6 indicating the heavy-tailed
property of the contourlet coefficients and that the distribution
is not Gaussian. Thus, the distribution of the contourlet coef-
ficients of an image can be described by a SaS PDF. We then
examine the histograms of the actual data as well as the SaS,
Cauchy, GG and the Laplacian density functions for a number
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Fig. 1. The log-scale PDFs of empirical data as well as the SaS, Cauchy,
GG and Laplacian distributions for two of the test images (a) Barbara oo = 0.8,
(b) Baboon o = 1.31.

of test images. Moreover, since in the range of «, the alpha-
stable PDF does not have a closed form expression except
when a = 1, corresponding to the Cauchy distribution, we
also investigate as to how accurately the Cauchy distribution
fits the distribution of the contourlet coefficients. The modeling
performance of the contourlet coefficients for two of the
images, Barbara and Baboon, are shown in Fig. 1. It is
evident from this figure that the univariate SaS distribution
and its Cauchy member for which the empirical data than
the GG and Laplacian distributions can. Similar results have
also obtained for other test images. Moreover, to quantify
the performance of the PDFs, we employ the Kolmogorov-
Smirnov distance (KSD) given by max| [ Ps(f) — ﬁf'(f)df|
in which, P(f) denotes the PDF of the random variable and
ﬁf (f) represents the PDF of the empirical data. Table II gives
the values of the KSD metric for the SaS, Cauchy and GG
PDFs of the image contourlet coefficients in two finest scales.
These values are obtained by averaging over 96 images. It is
seen from this table that the univariate SaS distribution, and its
Cauchy member, provide better fits to the empirical data than
the GG distribution does. The amplitude probability density
(APD) function, given by P(|X| > x), is another common sta-
tistical representation of heavy-tailed signals. The APD can be
used to compare the closeness of the alpha-stable and Cauchy
distributions to the empirical data. It can be empirically
calculated by counting the data, X for which |X| > x. It can
be also evaluated theoretically from a given density function
by estimating its parameters from the transformed coefficients.
It is known that the alpha-stable density function has a polyno-
mial tail P(X > x) ~ cqx %p%*, x — 00, where X is a non-
Gaussian SaS random variable and ¢, = sin(%)@ [43].
We now examine the APD curves of the actual data as well as
the Sa.S, Cauchy, GG and Laplacian distributions for a number
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TABLE II
THE AVERAGED KSD VALUES OF THE SaS, CAUCHY AND
GG DISTRIBUTIONS IN MODELING OF THE CONTOURLET
COEFFICIENTS OVER 96 IMAGES

KSD
Direction | Scale SasS Cauchy GG
1 0.0353  0.0391 0.0419
2 I 0.0530  0.0758  0.0790
3 0.0585  0.0593  0.0605
4 0.0541 0.0580  0.0616
1 0.0634  0.0896  0.0983
2 0.0642  0.0788  0.0914
3 0.0693  0.0875  0.0993
4 0.0738  0.0901 0.0965
5 I 0.0754  0.0953  0.1011
6 0.0673  0.0874  0.0964
7 0.0562  0.0734  0.0845
8 0.0634  0.0850  0.0953
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Fig. 2. APD curves of the empirical data as well as the SaS, Cauchy, GG and
Laplacian distributions for two of the test images (a) Barbara (b) Baboon.

of test images. In Fig. 2, the APD curves for two of the images,
Barbara and Baboon, are depicted. It is seen from this figure
that the SaS distribution, and its Cauchy member, provide
better fits to the distribution of the contourlet coefficients for
both the mode and the tail of the actual data than that provided
by the GG and Laplacian distributions. Similar results have
also been obtained for other test images.

D. Modeling of Contourlet Coefficients Using Bivariate Sa.S

It is known that the contourlet coefficients of an image have
across scale dependencies with their parents and children [35].
Fig. 3 depicts a parent-children relationship for a three-scale
contourlet decomposition with eight directions in each scale.
This dependency plays an important role in the modeling of
the contourlet coefficients. It is also known that the contourlet
coefficients of an image are non-Gaussian [33], [39], i.e., their
distributions have large peaks around zero and tails heavier
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Fig. 3. Parent-children relationship for a three-scale contourlet decomposition
with eight directions in each scale.
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Fig. 4. The empirical joint child-parent histogram across two scales of the
contourlet coefficients for the fourth direction of the Barbara image. (b) The
configuration of the bivariate SaS distribution.

than that of a Gaussian PDF. In view of this, we also model the
contourlet coefficients of an image using the bivariate alpha-
stable distribution not only to capture the heavy tails of the
distribution of the contourlet coefficients, but also to take into
account the contourlet coefficient dependencies across scales.
Fig. 4 shows the joint histogram of the contourlet coefficients
across scales for one of the test images, Barbara, along with a
possible configuration of the bivariate SaS PDF. It can be seen
from this figure that the bivariate SaS PDF can suitably model
the parent-children relationship of the contourlet coefficients
across two consecutive scales.

III. WATERMARKING
A. Watermark Embedding

In the embedding process, we focus specifically on a mul-
tiplicative spread spectrum scheme, for reasons mentioned in
Section I, in the contourlet domain. The contourlet transform
is first applied to an image to capture the important features
of the image in a few coefficients. It has been shown that a
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Fig. 6. Block diagram of the watermark detection procedure; a Bayesian log-likelihood ratio is employed.

watermark should be inserted into the significant features of an
image in order to increase the robustness of the watermark [3].
In view of this, we are going to find the coefficients that
represent most of the features of an image; hence, we compute
the energy of the coefficients in each directional subband and
then select the subband X that has the highest value for its
energy for embedding the watermark. For an M| x M, image,
this subband X is given by

N;j
MM
_ k 12 o 1412
X =argmax Z[Cj,d] , Nj= 2GDp. 4)
j.d k=1 J
where j = 1,..., J refers to the number of resolution levels
and d = 1,..., D; to the number of frequency directions.

Fig. 5 shows a block diagram of the proposed watermark
embedding procedure. The watermark sequence W modifies
the contourlet coefficients of the selected subband X giving
the watermarked coefficients Y. The watermark may or may
not contain a message. When the watermark carries a message,
the message is coded into a binary sequence {b,-}lN= | with +1
for bit 1 and —1 for bit O for the message, otherwise b = 1,
i.e., single bit watermarking. The watermark is generated
using a direct sequence spread spectrum technique, wherein
the watermark is generated using a pseudorandom sequence
generator that has an authentication key as its initial value.
This pseudorandom sequence spreads the spectrum of the
watermark signal over many coefficients making it difficult to
be detected. To maximize the security and robustness of the
watermarking scheme, the sequence should have white-noise
like properties [7], [15]. Let such a sequence be denoted by
{s,-}f-v= 1» Where s; takes the values 1 or —1 with equal prob-
ability. In order to assure a robust watermarking scheme, the
watermark should have maximum strength without affecting
the perceptual quality of the image. For this purpose, a positive
watermark weighing factor ¢ is used to provide a trade-off
between the robustness of the watermarking method and the
imperceptibility of the embedded image based on the local

characteristics of the image for a given resolution level and
frequency direction. The contourlet coefficients of the selected
subband are modified as

yi =xi +{xiw; (5)

where {x,-}lN= , and {y,-}lN= , are the original and water-
marked coefficients, respectively, and W = {w; = b,-s,-}f-v= I-
The weighting factor ¢ is calculated for an image by
using the watermark to document ratio (WDR) given by
[71, [14], and [15]

2
= ©)

Xi

WDR = 10log

where the term “document” refers to the contourlet coefficients
of the original image and ale, = % Zixiz. In this case, the
watermark can be adapted to the local properties of the original
image. It should be mentioned that ¢ can be increased to a
point where the watermark is still invisible, and yet it is still
detectable. The watermarked contourlet coefficients are then
inverse transformed to obtain the watermarked image.

B. Watermark Detection

In general, a watermarking scheme for copyright protection
has an embedded watermark that is known to the intended
receiver. Hence, the verification of its existence, i.e., the detec-
tion of the watermark, is sufficient for the purpose of checking
the authenticity of the copyright. Fig. 6 gives a block diagram
of the different steps involved in the watermark verification
process. Current detection methods use the signal statistics
for the watermark detection [6]-[12], [15]-[19]. In this work,
we employ a Bayesian log-likelihood ratio test for detecting
the watermark in the contourlet coefficients of a watermarked
image. This method can be reduced to a binary hypothesis test
to verify the presence of a watermark. It consists of testing
an alternative hypothesis H against a null hypothesis Hy
and can be mathematically formulated based on the statistical
properties of the contourlet coefficients [34]. The hypotheses
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Hi and Hj represent as to whether the contourlet coefficients
are watermarked by the sequence W or do not carry any
watermark, respectively, and can be stated as

H Y =X+cXW
Hy:Y =X (7)

In detection, the goal is to see whether or not there is a
watermark in the received image Y, based on the statistical
properties of the original image X. The data is modeled by an
appropriate statistical distribution by assuming independence
of the observations. The decision rule is then defined as the
likelihood ratio Age(Y)

Sfy(Y|H1)
Ndger(Y) = 2 ®)
Jy(Y|Ho)
which is then compared to the detection threshold ¢
H,
>
Ader _ 7 ©)
H

The likelihood ratio uses the PDFs under each hypothesis as
Y

KO = 1o oG )
fy(Y|Ho) = fx(Y) (10)
The likelihood ratio becomes
N P(l i ) 1
Ager(Y) = tewic 11
der (Y) 1;[1 Pon T¥iw (1D

In practice, the log-likelihood ratio is usually preferred in
hypothesis testing [34], [55], [56] and is defined as the natural
logarithm of Ag./(Y); hence, the decision rule becomes

Hj

>
In(Ager) ~ In(z) (12)

Hy

and the log-likelihood ratio is
NP
14+Cw;
In(Aget(Y)) = In . (13)
@)= 2\ =50 T

The detector is supposed to choose between Hj and Hy based
on the received image Y. In this case, if In(Age(Y)) > 7,
H is accepted; otherwise, Hy is accepted. The log-likelihood
ratio is clearly a superposition of N statistically independent
random variables with finite mean and variance. Thus,
according to the central limit theorem for large N [55],
the log-likelihood ratio follows an approximately Gaussian
distribution under each hypothesis. The mean and variance of
each of the Gaussian distributions can be estimated from the
empirical data and are given by (uo, 002) and (,ul,alz), for
Hy and Hi, respectively. It is known that in the decision task
there may be two types of errors [56]. Type I error occurs
when detector decides Hq{ when in fact Hy is correct. This
error is called the probability of false-alarm denoted by Py,.
Type II error occurs when Hy is accepted while H; is correct.
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This error is called miss-detection denoted by P,, = 1 — Py,
where Pgj.; is the detection probability of accepting H; when
the watermark is present. Since, there is no closed-form
expression for the SaS distribution except when o takes the
values 1 for the Cauchy or 2 for the Gaussian distributions, in
order to design the watermark detector i.e., finding the mean
and variance of the log-likelihood ratio, using the best-fit Sa.S,
we resort to a Monte Carlo simulation to numerically find the
log-likelihood ratio /n(Ag4er). To this end, 1000 randomly gen-
erated watermark sequences that have uniquely-defined keys
are employed. For each run, we first estimate the I[n(Ag.;) of
an image using (13) for both the hypotheses. The experimental
mean and variance of In(Ag.) are then estimated. Thus,
when the mean and variance of the log-likelihood ratio under
both hypotheses are known, for a particular value of 7, the
probabilities of false alarm and detection can be estimated
as [56]

Pra=0Q (TZS‘O)
Paar = 0 ()

where Q(x) is defined as Q(x) = ﬁfxoo e_zz/zdz. The
decision threshold is obtained by using the Neyman-Pearson
criterion that minimizes the probability of miss-detection
(i.e., 1 — Py,) for a given probability of false alarm P, [7],

[15] and can be expressed as

(14)

t =000 (Pfa) + Ko (15)

and Py.; as
o0 M1 — MO
Paer = Q (—Q "(Pra) — —)
o1 o1

The performance of the proposed statistical detector can be
analyzed theoretically by relating the probability of detection
and the probability of false alarm. Resulting curves are called
the receiver operating characteristics (ROC). It should be noted
that the probability of detection needs to be kept at a high level
for a predefined rate of false alarm to increase the reliability
of detection. Fig. 7 depicts the corresponding experimental
ROC curves for the bivariate and univariate SaS distribution
by averaging over 96 images. This figure also shows the
theoretical ROC curves for the bivariate and univariate
Cauchy with « = 1 and GG distributions. The theoretical
ROCs can be derived by obtaining the mean and variance
of the log-likelihood ratio under each hypothesis. Using the

(16)
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Fig. 8. Original (a-e) and watermarked with W DR = —40 dB (f-j) images of Lena PSNR = 58.42, Barbara PSNR = 52.19, Peppers PSNR = 60.20, Airplane
PSNR =56.85 and Baboon PSNR = 53.35. No visual difference can be realized.

bivariate Cauchy PDF, given by f, (x1, x2) = m,

the theoretical mean and variance of [n(Ager) under Ho (note
that y; = x;) can be shown to be (see the Appendix)

1o = E[In(Ager)| Ho]
W+ +In(1-9)
2
ézN: ( Y-+ xn X )
24 (G2 Hx3) (0 2 (72)) +x ) 12
a7
and

05 = VARIIn(Ager)|Hol
=E [ln(Adez) - ln(z\de,)mo]]2

x112
—Z <1+C an 2+ ()7 +

2
18
y +(111 )2 122> (18)

where parameter y of the bivariate Cauchy distribution can
be directly computed from the children contourlet coefficients
of the watermarked image. To obtain the mean and variance
of the log-likelihood ratio, following assumptions have been
made. 1) The number of directions in each scale should be the
same in order to have a relation between the parents and their
children in each direction. 2) The watermark is embedded only
in the children subband. To have both x;; and x;» to be of the
same size, we expand the parent subband by a factor of 2.

It should be noted that the PDF of the original and water-
marked images are assumed to be the same, i.e., embedding
the watermark does not change the distribution of the original
image coefficients [7], [8]. The mean and variance of the
log-likelihood ratio under H; can also be found in a similar
manner. It can easily be shown that 49 = —x1 and ag = 012.
It is seen from Fig. 7 that the detectors based on the bivariate
SaS distribution, and even its Cauchy member, have higher
rates of detection for a given probability of false alarm
than that based on the GG distribution. We also obtain the
CPU times for the detectors based on these distributions;
Table III gives the CPU times averaged over 96 images. It is

observed from this table that the CPU time when using the
best-fit bivariate and univariate SaS is indeed high. Thus,
the slight performance improvement of the bivariate SaS
over that using bivariate Cauchy distribution, as seen from
Fig. 7, is at the expense of a substantially high computational
complexity. Therefore, without any appreciable loss of the rate
of detection, a watermark detector is also designed based on
the bivariate Cauchy distribution. It should be noted that the
bivariate Cauchy distribution has a closed form expression for
its PDF which leads to a computationally efficient detector
with low CPU time required.

IV. EXPERIMENTAL RESULTS

Experiments are conducted to investigate the impercepti-
bility of the embedded watermark as well as the robustness
of the proposed method against attacks. The standard images
considered in these experiments are 96 images, each of size
512 x 512 [57] and are implemented in MATLAB on an
Intel Core i7 2.93 GHz personal computer with 8 GB RAM.
However, the results for a few of the images are included
in the paper due to space limitations. In our experiments,
the watermark is generated following the procedure described
in Section IV (a). To select the appropriate subband for
embedding the watermark bits adopting the multiplicative
embedding rule, both the robustness and the visual quality
of watermarked image should be considered. In view of this,
we embed the watermark through the following procedure:

1) Decompose the original image into a number of sub-

bands by using the contourlet transform with two pyra-
midal levels followed by eight directions in each scale.

2) Compute the energy of each subband by using (2) and

choosing the subband that has the highest energy for
embedding the watermark.

3) By using (3), we can embed the watermark in a multi-

plicative manner.

4) Apply the inverse contourlet transform to the modified

coefficients to obtain the watermarked image.
In Fig. 8(a)-(e), a few of the original images namely, Lena,
Barbara, Peppers, Airplane and Baboon are presented and the
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TABLE III
THE AVERAGED CPU TIMES OF THE DETECTORS USING THE BIVARIATE
AND UNIVARIATE Sa S, BIVARIATE AND UNIVARIATE CAUCHY
AND GG DISTRIBUTIONS

| bi-Sas
CPU time (sec) | 63.50

SaS  bi-Cauchy

3.12

Cauchy GG
1.85 1.84

43.47

det

& 0.9 ~e-Contourlet, Bi-Alpha-stable]
g -e- Curvelet, Bi-Alpha—stable
5 0.%9 0 DTCW, Bi-Alpha—stable -
2 © Wavelet, Bi-Alpha-stable
A o -8-Contourlet, Bi-Cauchy
5 e -&- Curvelet, Bi-Cauchy
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= 0.6 o Wavelet, Bi—Cauchy H
£ " Contourlet, GG
S 05}» Curvelet, GG ]
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A
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Fig. 9. ROC curves for contourlet, curvelet, wavelet and dual-tree complex
wavelet (DTCW) transforms obtained by averaging on 96 images.

watermarked images with WDR = —40 dB in Fig. 8(f)-(j).
The images are indistinguishable with high PSNR values,
thus showing the effectiveness of the multiplicative contourlet-
domain watermarking in terms of the invisibility of the water-
mark. Watermark detection is performed without requiring
the use of the original image (i.e., blind image watermark-
ing). In order to compare the performance of the contourlet
transform with other sparse transforms such as wavelet, dual-
tree complex wavelet and curvelet transforms, we consider
two-level decomposition for each transform and a same-size
watermark inserted in their subband coefficients. The ROC
curves for various transforms are derived for the univariate
Cauchy and GG distributions. Fig. 9 depicts the ROC curves
obtained for one of the test images, the Barbara image.
It is seen from this figure that the contourlet and curvelet
transforms have the best rates of detection as compared to
the other transforms. Similar results are obtained for other
test images. The reason for better rates of detection for these
two transforms is due to their capability in capturing more
geometrical shapes by allowing for a flexible number of
directions at each scale [39], [40]. However, the fact that the
contourlet transform has been defined directly in the discrete
domain along with its 2D frequency partitioning on concentric
rectangles rather than on concentric circles for curvelet, has
motivated us to use the contourlet transform in our work.
Table IV gives the CPU times averaged over 96 images,
required by the detectors using the contourlet and curvelet
transforms. It is seen from this table that the detector using
the contourlet transform has a very much lower computational
complexity compared to that using the curvelet transform.
The significantly lower CPU time for the contourlet-based
method can be attributed to the fact that this transform is not
only defined directly in the discrete domain, but also employs

iterated filter banks making it computationally efficient.
Now, for each image, the performance of the bivariate

Cauchy detector is first compared to that of the GG detector
in terms of the ROC curves without any kind of attack. It is
to be pointed out that the theoretical ROC can be computed
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Fig. 10. Theoretical and experimental ROC curves for the bivariate Cauchy
and GG detectors obtained by averaging on 96 images.
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Fig. 11. Probability of detection for watermarks of varying strength

parametrized by the WDR(dB) for various detectors obtained by averaging
on 96 images.

TABLE IV
THE AVERAGED CPU TIMES OF THE UNIVARIATE CAUCHY DETECTOR
USING THE CONTORLET AND CURVELET TRANSFORMS

‘ Contourlet ~ Curvelet

CPU time (sec) | 185

213.90

directly from the data by estimating the parameters for each of
the two distributions. To validate this theoretical ROC, Monte
Carlo simulations are performed. The experimental mean and
variance of [n(Age) for each of the detectors are estimated.
The theoretical and experimental ROC curves averaged over
96 images are shown in Fig. 10 for the bivariate Cauchy and
GG detectors. It is seen from this figure that the experimental
ROC curves are very close to the theoretical ones for both
the detectors. It is also seen that the bivariate Cauchy detector
yields a performance which is much better than that of the
GG detector as evidenced by a higher probability of detection
for any given value of false alarm.

In order to compare the performance of the detectors for
watermarks with different strengths, we consider WDR in the
range —42 dB to —32 dB for all the test images. Fig. 11 shows
the results of detection rate averaged over 96 images when Py,
is fixed at 10~3. From this figure, it can be seen that as WDR
decreases, the performances of all the detectors deteriorate.
However, the bivariate SaS and bivariate Cauchy detectors
outperform the GG detector at any level of the watermark
strength, as can be seen from the values of the detection
probabilities.

Fig. 12 shows that the probability of false alarm, Pr,, as a
function of the strength of the watermark, WDR, for a fixed
value of the probability of detection Pg.; = 0.9. It is seen from
this figure that the probability of false alarm for the proposed
bivariate SaS and bivariate Cauchy detectors are lower than
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Fig. 12. Probability of false alarm for watermarks of varying strength parame-
trized by WDR(dB) for various detectors obtained by averaging on 96 images.
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Fig. 13.  ROC curves obtained by averaging on 96 images for various
detectors when the AWGN with various standard deviations is added to the
watermarked images.
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Fig. 14.  ROC curves obtained by averaging on 96 images for various
detectors when images are under salt & pepper noise.

that of the GG detector for different watermark strengths.
The robustness of the detectors against various attacks is next
studied using the same set of images. To study the robustness
against noise, the watermarked images are first corrupted by
AWGN with ¢ varying from O to 25. Fig. 13 shows the
averaged ROC curves obtained using various detectors when
the watermarked image is contaminated by AWGN noise.
It is seen from this figure that the proposed bivariate SaS
and bivariate Cauchy detectors are more robust than the GG
detector is. The performance against the salt & pepper noise
attack is also tested when o of the noise is varied from O to 25.
Fig. 14 shows the averaged ROC curves for various detectors.
It is seen from this figure that the proposed watermarking
algorithm using the bivariate SaS and bivariate Cauchy detec-
tors are more robust against salt & pepper noise also. The
robustness of the proposed detector under JPEG compression
is now investigated. For this purpose, we compare the log-
likelihood ratio, In(Age;), with the decision threshold 7 for a
given false alarm probability to obtain the detector response
for a given image. The detector responses of the proposed
watermarking scheme with the bivariate SaS and bivariate
and univariate Cauchy detectors as well as that with the GG
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Fig. 15. Detector response for the (a) bivariate alpha-stable, (b) bivariate
Cauchy, (c) univariate Cauchy and (d) GG distributions when the Lena image
is JPEG-compressed with different quality factors varying from 1 to 100,
WDR = —38 dB.

detector for one of the test images, the Lena image, are shown
in Fig. 15. It is seen from this figure that by using the proposed
watermarking scheme with the bivariate SaS detector and
even its Cauchy member, a higher detection rate is obtained
and that the scheme is more robust than the one with the
GG detector. Finally, the robustness of the proposed scheme
when the watermarked image undergoes median filtering is
studied. Fig. 16 shows the detector responses of the proposed
watermarking scheme with the bivariate SaS and bivariate
and univariate Cauchy detectors as well as that with the GG
detector for the Lena image with windows of size 3 x 3, 5 x5



SADREAZAMI et al.: STUDY OF MULTIPLICATIVE WATERMARK DETECTION

=)

ke © Bi—Alpha—stable
E ............... —Threshold level, T
<@ """""" CR
Eosp o T
s T
- g
o
§
E
3
5
a
33 5x5 7x7
Mask size
(a)
10 i
_ -e-Bi—Cauchy
SHK S —Threshold level, T
<§ ---------------
zs R
s | T e
Z T
1=}
o
é
E
3
5
a
33 5x5 7x7
Mask size
()
___________ © Cauchy
S T TT— —Threshold level, T
Vg """" o.
<
g
2 o .
g .
K <
g
E |
o3
a
8 .
3x3 5x5 X7
Mask size
(©
4
_ ° GG
8 — Threshold level, T
32 |
< O = e
S T
S o
2 or
=
o
o
E
5 7
g
J3
a4t
3x3 5x5 7x7
Mask size
(@
Fig. 16.  Detector response for the (a) bivariate alpha-stable, (b) bivariate

Cauchy, (c) univariate Cauchy and (d) GG distributions when the Lena image
is under median filtering with windows of size of 3 x 3, 5 x 5 and 7 x 7;
WDR = —38 dB.

and 7 x 7 for the median filter. It is evident from this figure
that for the window size of 7 x 7, the GG detector cannot even
recognize the presence of the watermark. Thus, the proposed
scheme using the bivariate SaS and bivariate Cauchy detectors
are much more robust than that with the GG detector.

V. CONCLUSION

In this paper, we have first studied the suitability of the
univariate and bivariate alpha-stable distributions in modeling
the contourlet coefficients of an image. We have shown that the
univariate alpha-stable distribution provides a more accurate fit
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to the empirical data in terms of the Kolmogorov-Smirnov dis-
tance as well as through a visual comparison of the histograms
of various distributions. We have also shown that the bivariate
alpha-stable distribution can capture the across-scale depen-
dencies between the contourlet coefficients. Motivated by these
modeling results, blind watermark detectors in the contourlet
domain using both the univariate and bivariate alpha-stable dis-
tributions have been designed. The proposed detectors employ
the Bayesian log-likelihood ratio criterion for the watermark
detection. It has been shown that the detectors based on both of
these distributions have higher rates of detection for a given
probability of false alarm than that based on the GG distri-
bution has. Even though the detector based on the general
alpha-stable distribution (with the best-fit alpha) provides a
higher detection rate, it is computationally expensive because
of the lack of a closed form expression for its distribution.
In view of this, a watermark detector has been designed
based on the bivariate Cauchy member of the alpha-stable
family. It has been shown that a very significant advantage
of the closed-form expression of the bivariate Cauchy PDF is
that it allows a derivation of closed-form expressions for the
mean and variance of the log-likelihood ratio in terms of the
empirical data. This has resulted in the design of a significantly
reduced-complexity detector, yet providing a performance
that is much superior to that of the GG detector and very
close to that corresponding to the best-fit alpha detector. The
performance of the proposed detectors have been evaluated
in detail by conducting several experiments. The robustness
of the proposed detectors, using the bivariate alpha-stable and
bivariate Cauchy PDFs, against additive white Gaussian noise,
salt & pepper noise, JPEG compression and median filtering
attacks has been studied and shown to be superior to that of the
GG detector.

APPENDIX

MEAN AND VARIANCE OF THE LOG-LIKELIHOOD RATIO
UNDER THE HYPOTHESIS Hy FOR THE BIVARIATE
CAUCHY DISTRIBUTION

For the multiplicative watermarking scheme given by (5),
the likelihood ratio Az (Y) is obtained as

Np(yi)l

14+Cw;

Ager(Y) = E . (A.1)

r (1) POy 14w

Therefore, the log-likelihood ratio is given by

N P( Vi ) 1

14+Cw;

In(Ager (Y)) = E In . A2
( det( )) P(yi) 1+Cwi ( )

i=1
which for the bivariate Cauchy distribution can be written as
e il
P2+ () + 0k
1
1+ ¢w;

3 N
n(Ager (V) = 5> In
i=1

N
+ Z In
i=1

(A3)
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Let In(Ager(Y)) = q1(Y) + 3q2(Y) where
q1(Y) = —In(1 + W)
y2+ Y2+ 73

Y 2
y:+ (1+(IW)2 +7Y;
It is known in that for large N, the log-likelihood ratio
under both the hypotheses can be approximated by Gaussian
distributions with means (uq, 1) and variances (002, 012) [55].

The mean and variance of the log-likelihood ratio under Hy
(i.e., yi = x;) can be obtained as [33], [50]

N

@(Y) = In

(A4)

po = u(In(Ager(V)); Ho) = (g, + ptg,)  (A5)
i=1
and
0@ = a2 (In(Ager(Y)); Ho)
N
_ 2 2
= Z (O'ql +to, — 2uqig + 2/“41/“42) (A.6)

i=1
In Section III (A), we assumed that the watermark sequence
W is generated by a pseudorandom sequence taking values
+1 and —1 with equal probability. Hence, u,, and ug4, can
be obtained as

1
gy = =7 (In(1 4+ ) +In(1 =)

A7
> (A7)
and
2, w2 vy ] 2 X1 2, 2

g = In(y +X1+X2)—§ln y +(1+C) + X35

1 X1

——1 24 (—)? 4+ x? A8

2”<V +(1—C)+ 2> (A8)

And hence ug can be calculated using (A.5). In order to find
the variance of the log-likelihood ratio, given by (A.6), the
various terms are found and given below

1
og = Elgil— g, = 2 (In(1+0)+In(1 =) (A9)

2 X1 \2 2\ 2
1 77+ () + X3
2 2 1-¢
02 = Elg3) — gy =~ [ In (A.10)
" AU E XS
2 2 2
Yo+ X7+ X5
Haqiq —= | In(1+¢)
192 }’2+(1)(T1()2+X%
2 2 2
X2+ X
——(ma=o Zy +X1”2L 2 (A.11)
re+ G2+ X
and
1
Haitgy = =5 (In(1+ ) +In(1 = )
y2 +X}+X3
In X 2 X 2 172
(62 + E2 +xD)02 +HEo2 +xD)
(A.12)

Then, after some mathematical manipulations, the final expres-
sion for the variance, as given by (18), can be obtained. In a
similar manner, the mean and variance of the log-likelihood
ratio under Hy for the GG distribution with the PDF given by
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— c .
fx.ccolx) = m exp (— |X—aﬂ‘ P, where ¢ > 0 is a shape
parameter, @ > 0 and u are the scale parameter and mean of
the GG distribution, respectively, can be obtained as

N

In(1 In(1 —
#O’GG:_Z n( +C)J2r n(l-y¢)
i=1
i2 —c —c
+Z -0+ -0-07 (A13)

and

N . |2¢
% 66 ZZ‘% ((I—C)fc—(l‘i‘C)ic)z
im1

+[ 2 (ana+opa-o

—(Un(1=NA+)7))
(n(1—¢) —In(1 +¢))?
+ 4

By inserting (A.13) and (A.14) into (13), the ROC curves for
the GG detector are derived.

(A.14)
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